Heat Pumps

A Crash Course

Keith O'Hara

Eco Performance Builders

- Home Performance all electric retrofits
- General, HVAC, and Insulation contractor
- Design/Build/Commission

All Electric High Performance Retrofits

Goals: •Great indoor air quality •Comfort •Efficiency •All electric

Barriers: •Our housing stock •Is leaky Is poorly insulated Has terrible duct systems •Some has knob and tube wiring •A lot have asbestos ducts Need the air handler relocated •Has small crawlspaces •Has small attics

Barriers continued:
Space for equipment and return
Space for outdoor units
Heat pump water heater location & noise issues
The HVAC industry is largely unaware of how poorly their equipment performs
Panel capacity and space

Design

We need a layout Window type and size Wall, attic and floor R-values Orientation Shading Climate zone Blower door Smaller is better

MODEL: ARU18RLF

554

43

47

50

AFR

Indoor temperature "FDB 60 65 70 "FDB *FWB TĊ IP TĊ IP IP TĊ -7 -5 19.3 2.42 18.9 2.47 18.4 2.52 temperature 20.7 20.2 2.68 19.7 2.74 5 3 2.63 14 12 2.73 22.2 2.68 21.6 21.1 2.79 23 2.79 2.85 19 23.1 22.6 22.0 2.91 32 28 23.3 3.02 22.8 3.08 22.2 3.14 Outdoor 41 37 25.5 2.67 24.9 2.73 24.3 2.78

26.9

29.7

30.8

2.50

2.23

2.24

26.2

29.0

30.1

2.55

2.28

2.29

25.6

28.3

29.3

2.60

2.32

2.34

75

IP

2.63

2.85

2.90

3.03

3.19

2.90

2.70

2.42

2.43

TC

17.5

18.8

20.1

20.9

21.1

23.1

24.3

26.9

27.9

AFR: Airflow Rate (CFM) TC: Total Capacity (k8tu/h) IP: Input Power (kW)

47

50

59

Installation and Commissioning Goals

Make targets for the install team Zero Duct Leakage 10% per room airflow targets 5% overall airflow targets 5 pascal pressure in rooms 3 degrees Air leakage targets

Noise

Delivered performance

State of the Industry — CEC Study on Delivered Performance

Not Intuitive Quality

Performance Factors

	CB B		63		1
	25.	1	LI	3	Contraction of the
	PR/ FL @25	Pa		y @25	1 march
	MODE		TIME A	WG	
					10.000
	DEVICE	UNITS	Cruise Target		Enter A
	MODE	CLEAR	TIME		13/6
	MODE	Stop Fan	AVG	State 1	SHE:
11/11/16			ENTER	and the second division of the second divisio	- MAR

Snap Shot Commissioning

Commissioning

	Supply Airflows (use only Energy Conservatory FlowBlaster)	Temp (F)	CFM	Flow Correction	Constant	Delta T	Calculation	Btu/Hr	Calculation		
_	Supply Grille #1 Room:	51.5	143.0	1.01	1.08	20.5	Delta SG1 -Weighted Return Temp	3208	BtuH (delta x 1.08 x CFM x Flow Correction)		
_	Supply Grille #2 Room:	50.5	134.0	1.01	1.08	21.5	Delta SG2 -Weighted Return Temp	3153	BtuH (delta x 1.08 x CFM x Flow Correction)		
_	Supply Grille #3 Room:	53.0	96.0	1.01 1.08		19.0	Delta 5G3 -Weighted Return Temp	1992	BtuH (delta x 1.08 x CFM x Flow Correction)		
_	Supply Grille #4 Room:	52.0	113.0	1.01	1.08	20.0	Delta SG4 -Weighted Return Temp	2468	BtuH (delta x 1.08 x CFM x Flow Correction)		
_	Supply Grille #5 Room:				1.08		Delta SG5 -Weighted Return Temp		BtuH (delta x 1.08 x CFM x Flow Correction)		
_	Supply Grille #6 Room:				1.08		Delta SG6 -Weighted Return Temp		BtuH (delta x 1.08 x CFM x Flow Correction)		
	Supply Grille #7 Room:				1.08		Delta SG7 -Weighted Return Temp		BtuH (delta x 1.08 x CFM x Flow Correction)		
_	Supply Airflow (continued from page 1)	Temp (F)	CFM	Flow Correction							
	Supply Grille #8 Room:				1.08		Delta SG8 -Weighted Return Temp		BtuH (delta x 1.08 x CFM x Flow Correction)		
_	Supply Grille #9 Room:				1.08		Delta SG9 -Weighted Return Temp		BtuH (delta x 1.08 x CFM x Flow Correction)		
_	Supply Grille #10 Room:				1.08		Delta SG10 -Weighted Return Temp		BtuH (delta x 1.08 x CFM x Flow Correction)		
_	Supply Grille #11 Room:				1.08		Delta SG11 -Weighted Return Temp		BtuH (delta x 1.08 x CFM x Flow Correction)		
	Supply Grille #12 Room:				1.08		Delta SG12 -Weighted Return Temp		BtuH (delta x 1.08 x CFM x Flow Correction)		
	Totals	486.0 CFM Total (Indicated airflow)					10820	Total Btu/Hr Delivered (sum entire column)			
	Total Delivered BtuH as measured at supply grilles	10820	BtuH (1) ←								
	Heat Pump Capacity at test condition -or- Sum of furnace rated output & (Furnace Fan Watts × 3.4)	12110	BtuH (2)	Gas furnace energ	tests- Calculate % Sensit y and leave EER sections	vie Delivered blank	*				
	Total Delivered BtuH(1) + by capacity BtuH(2)	89%	% Sensible Delivered energy	Manuf, EER System Power			Delivered EER	livered EER			
	Manufacturer System Power at test condition (indoor + outdoor) AC & Heat Pumps only	930	Watts ≡ →	13.0	Manuf capacity divided by kW (x1000)	960	Measured System Pwr (Watts) = →	11.3	Delivered BtuH divided by measured power (kW x 1000) = Delivered EER		
	Delivered EER divided by Manufacturer EER	86.6%	% Sensible Delivered EER								
	Measure all exhaust flows and mark type and whether continous or demand controlled										
5)	Room temperature stratification testing at 3' AFF, center of all rooms				7)	7) Ventilation Location		Supply or Exhaust / continuous or switched			
L	All temps after continuous minimum 15 n	ninutes of system op	eration, system run	ning, all doors	s open	#1 Room:	Up Bath	116	exh / continuous		
_	#1 Room:	71.0	(F)		Pascals across door	#2 Room:					
_	#2 Room:	70.0	(F)		Pascals across door	#3 Room:					
_	#3 Room:	70.0	(F)	0.5	Pascals across door	#4 Room:					
	#4 Room:	69.0	(F)	2.5	Pascals across door	#5 Room:					
-											

Delivered Performance MODEL: ARU18RLF

AFR	554

					Indoor temperature						
		°FD8	60		65		70		75		
	°FDB	°FWB	TC	IP	TC	IP	TC	IP	TC	IP	
۰ I	-5	-7	19.3	2.42	18.9	2.47	18.4	2.52	17.5	2.63	
l a	5	3	20.7	2.63	20.2	2.68	19.7	2.74	18.8	2.85	
L S	14	12	22.2	2.68	21.6	2.73	21.1	2.79	20.1	2.90	
đ	23	19	23.1	2.79	22.6	2.85	22.0	2.91	20.9	3.03	
5	32	28	23.3	3.02	22.8	3.08	22.2	3.14	21.1	3.19	
8	41	37	25.5	2.67	24.9	2.73	24.3	2.78	23.1	2.90	
otto	47	43	26.9	2.50	26.2	2.55	25.6	2.60	24.3	2.70	
°	50	47	29.7	2.23	29.0	2.28	28.3	2.32	26.9	2.42	
	59	50	30.8	2.24	30.1	2.29	29.3	2.34	27.9	2.43	

AFR: Airflow Rate (CFM) TC: Total Capacity (kBtu/h) IP: Input Power (kW)

There are a lot of houses They're all different

Multi Zones

Ductless Systems

Ducted Mini Splits Work Best in Most Cases

Duct Location Considerations

Duct locations

- Attics with buried ducts
- Ducts as short as possible
- Sealed crawlspace
- Ducts always as short as possible

Short Ducts

Air Sealing Before and After

Simple Filtration

Home Ventilation

Minimum standard

- Continuous running low flow bath fan(s)
- Ducted range hood with good flow and low noise

The best solution

 Balanced HRV/ERV ducted to bedrooms and bathrooms

One Compilation of Defeating Global Warming

Ranking	Solution	CO2 Equiv. Reduction			
1	Refrigerant Capture	89.74 GT			
2	On Shore Wind Turbines	84.60			
8	Solar Farms	36.90			
10	Rooftop Solar	24.60			
26	Electric Vehicles	10.80			

Refrigerant leaks and how to minimize them

Equivalency Calculator

6lbs leaked r410a

= Driving a commuter car 16,000 miles

Making Flares

Ultrasonic Leak Detector

Refrigerant Leak Detector

FLARE CONNECTIONS

- Three main issues
 - Flare connections are difficult to install correctly and test
 - Technicians aren't trained on how to install and/or test them
 - 500 PSI
 - Hot and cold
 - No accountability

Why Is It Compicated??

- Smaller ducts to fit in the space and lose less energy
- Less air = one central return
- Lower watt draw
- Low noise
- Comfort.
- Less energy usage
- Lower equipment cost and easier to purchase
- Less grid impact
- Air sealing and insulation is fantastic load shifting battery
- Panel space / capacity