Bloomberg Associates

Pathways to DeepGHG Reductions in Oakland

March 2018

Final Repo

The Bloomberg Associates Sustainability Practice has worked with the City of Oakland to identify opportunities and measure the impact of deep greenhouse gas (GHG) reductions. A number of people have contributed their time and energy to this effort. Specific thanks to the following people for their contributions:

- Oakland Public Works Becky Dowdakin, Daniel Hamilton, Shayna Hirshfield-Gold
- OakDOT Ryan Russo, Michael Ford, Iris Starr
- Bureau of Planning and Building Darin Raneletti
- **City Administrator's Office** Christine Daniel, Alex Orologas
- Oakland Climate Fellows Mukta Kelkar, Ben Linthicium, Allison Hooks, Yoni Carnice
- AECOM Claire Bonham-Carter, Amruta Sudhalkar

About Bloomberg Associates

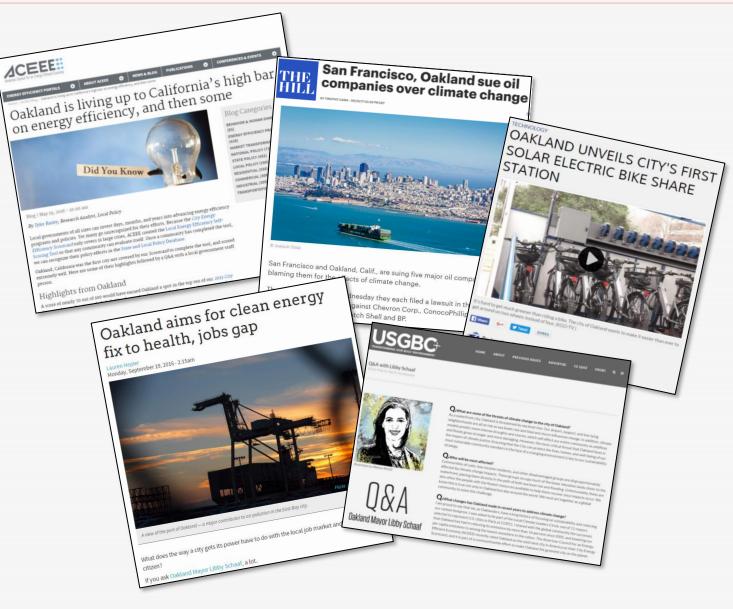
Bloomberg Associates is an international consulting service founded by Michael R. Bloomberg as a philanthropic venture. Its mission is to help city governments improve the quality of life of their citizens.

Directed by a team of globally recognized experts and industry leaders, the consultancy works to improve urban environments by collaborating with cities to develop best practices, build consensus and foster key relationships. Through its guidance and mentorship, Bloomberg Associates delivers actionable insights and plans across multiple disciplines.

BA

Introduction	
Progress to Date	8
Pathways to 80 by 50 Reduction	12
Policy Considerations	27
Conclusion	44
Appendices	
A. Buildings Technical Materials	48
B. Transportation Technical Materials	86
C. Stakeholder Engagement	

ntro Progress Pathways Policy Conclusion Appe


Oakland is a recognized climate leader, but must accelerate action to achieve its GHG reduction goals

Oakland is a recognized leader in taking action to reduce its greenhouse gas (GHG) emissions and preparing the city for climate change.

The City Council **approved the City's first Energy and Climate Action Plan (ECAP) in 2011**, which set **goals to reduce GHG emissions 36% below 2005 levels by 2020 and 83% by 2050**. The City is a signatory to the Global Covenant of Mayors for Climate and Energy and the U.S. Climate Alliance to meet the commitments of the Paris Climate Accord.

Despite this leadership on the national and global stage, the **City is not on track to achieve its climate goals**. Bloomberg Associates was engaged by the City to identify the actions that Oakland needs to take to meet its targets.

To complete this analysis, **Bloomberg Associates utilized the CURB climate action planning tool**. The final results of the analysis are presented in this report.

Oakland is the first U.S. city to use CURB to conduct in-depth GHG analysis

BA

CURB was developed by the World Bank, C40, Bloomberg Philanthropies, Global Covenant of Mayors, and others to assist cities in the creation of climate action plans to reduce GHG emissions. The tool was designed to:

- Provide '**strategic-level' analysis** to help the city identify and prioritize low carbon infrastructure and GHG reduction actions
- Help cities make the best use of limited funding by focusing on the actions with greatest impact
- Allow cities to quickly see the emission implications and cost effectiveness of potential actions

Oakland is the first city in North America to use the tool indepth as a key input into its climate planning and will share its experience as a pilot with other cities. CURB measures the GHG impacts of more than 1,000 actions across six sectors:

Private

Building

Energy*

Municipal Buildings & Public Lighting

Electricity Generation

Solid Waste

Waste & Wastewater Transportation*

*Given that 86% of Oakland's GHG emissions are generated by private buildings and transportation, analysis focused on these sectors in CURB.

The analysis utilized CURB to support data-driven climate action planning in Oakland

BA

Bloomberg Associates and the City of Oakland, with technical support from CURB's development team, piloted a unique six-part methodology to utilize CURB to support data-driven climate action planning.

Gathered Baseline Data

Identified data from the best available sources to estimate where Oakland's building, transportation, and energy systems are today and to forecast population and economic trends.

Engaged Local and National Experts

Interviewed more than 30 local and national experts and hosted a series of sector-specific workshops with more than 50 Bay Area experts to refine the baseline data and collaboratively estimate the city's projected trajectory and actions needed to achieve GHG reduction goals.

3 Out

Outlined Key Assumptions

The analysis assumes Oakland reaches 100% carbon-free energy by 2030. A carbon-free energy grid is the backbone of future deep GHG reductions and is critical to Oakland achieving an 83% reduction by 2050. The analysis also rests upon core (in-boundary) assumptions for buildings and transportation that are detailed in the next section of the report.

Oakland tracks both core (in-boundary) and consumption-based emissions, however this analysis is limited to core GHG emissions due to the parameters of the CURB tool.

4

5

6

Developed GHG Reduction Scenarios

Developed two scenarios for the CURB tool:

- **Projected Trajectory**: Assumes technological advances and market adoption/penetration, stated State and Federal policies, existing City policies and funded programs, and limited City actions responding to market trends
- **Deep Decarbonization**: the actions needed to achieve an 83% reduction in GHG emissions by 2050

Analyzed Gaps Between Scenarios

Compared GHG emissions reductions from the Projected Trajectory to the reductions achieved in Deep Decarbonization to identify the key gaps between what the city is projected to achieve and what it needs to achieve to meets its GHG reduction goals. This part of the analysis identified the keys gaps where City action is required.

Identified Policy Areas and Case Studies

Based upon the gap analysis and the modeled GHG reduction impacts, the analysis identified priority policy areas where City action is needed. These policy areas should help shape the ECAP update.

The report also includes case studies from other cities around the world that could serve as models for Oakland in the targeted areas it needs to take action to achieve deep GHG reductions.

The analysis was limited by several important factors

BA

Data Availability

Underlying Assumptions

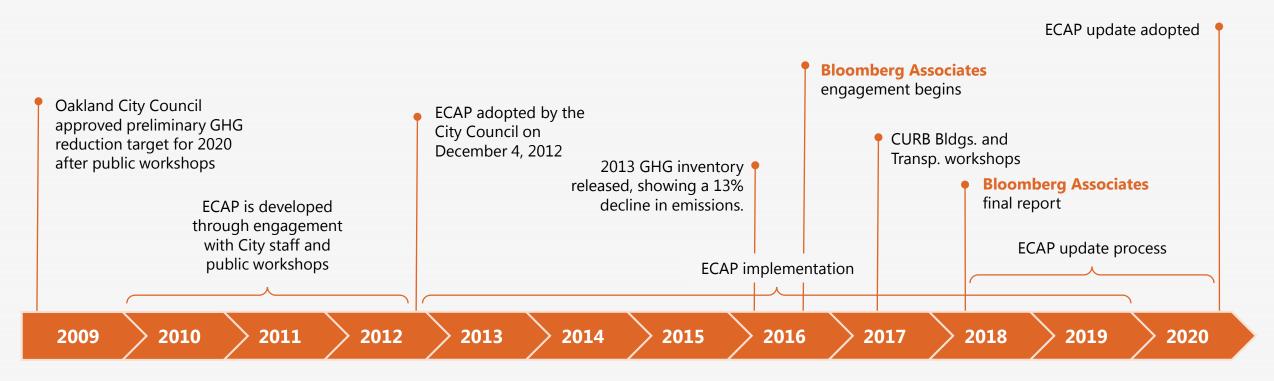
Core Versus Consumption Emissions

Constraints of the CURB Tool

Climate Change

•

- There are no comprehensive, detailed databases on the conditions or types of systems in Oakland's building stock or vehicles, nor is there detailed mode share information for the city. As a result, the analysis utilizes proxy data or educated assumptions based on research and expert interviews.
- Analysis that models more than 30 years into the future is an inherently projective exercise that involves a series of key underlying assumptions. While transparently documented in this report, the analysis relies upon assumptions on technology development, market changes and the impacts of State-level policies. It does not incorporate any assumptions regarding behavioral changes that could change consumption patterns (e.g., increasing plug loads for electronics). These are largely outside the City's control, yet for the purposes of this analysis, shape the determination of where City action is needed.
- Oakland is a leading city in measuring consumption-based emissions in addition to core (in-boundary) emissions. Reducing consumption-based emissions over the long term is critical to reducing the impacts of climate change; however, it often falls outside the scope of traditional city-level powers and responsibilities. Due to the setup of CURB, this analysis was limited to core (in-boundary) emissions.
- The structure for transportation actions in CURB includes grouping many individual potential actions within broader categories (e.g., passenger mode shift). The outputs of the tool, therefore, do not allow for granular analysis in the impact of any one individual action to shift modes. This particularly limited the assessment of the economic costs of transportation actions to shift modes and electrify vehicles.
- This analysis does not account for the impacts that climate change may have on energy consumption patterns. While a warming climate is likely to shift heating and cooling loads in Oakland, this analysis does not attempt to forecast the extent or pace of such changes.



CURB's outputs can help inform Oakland's policies and investments, including the update of its Energy and Climate Action Plan (ECAP)

BA

Oakland's ECAP **outlines and prioritizes the actions the City will take to reduce energy consumption and GHG emissions in Oakland**. ECAP **establishes GHG reduction targets and actions**, as well as frameworks for coordinating implementation and reporting on progress.

Oakland will **begin updating its ECAP in 2018, for adoption in 2020**. Bloomberg Associates' analysis is intended to serve as a **decision support tool for the updated plan**, identifying the critical actions needed to put Oakland on a pathway to meet its long-term GHG reduction goals and facilitating communication with key stakeholders.

Taking action to reduce GHG emissions provides many benefits to Oakland residents

ים יי

Buildings Co-Benefits

and lowering risks of asthma, respiratory disorders, heart

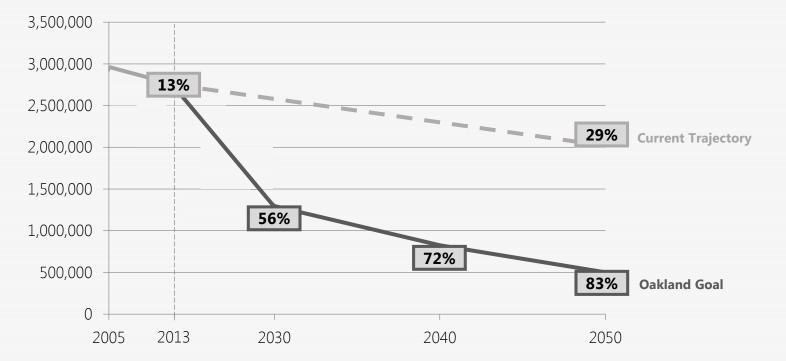
attacks and cancer

Social Equity	 Energy costs have a disproportionate impact on lower income residents Energy efficiency measures lower energy bills, saving money for households and businesses 	 Improving public transit service and pedestrian and bicycle infrastructure is likely to benefit those without access to a private vehicle
Local Economy	 Reduction in building energy use reduces costs When a business or household lowers their energy costs, the savings can be spent elsewhere in the local economy, resulting in additional jobs 	 Reducing transportation costs through alternative modes of transportation (e.g., walking, biking, and mass transit) can provide savings over private car usage These savings can be spent elsewhere in the local economy, resulting in additional jobs
Energy Independence	 Reducing the use of imported fossil fuels lowers the community's vulnerability to energy price and supply shocks 	 Reducing fossil fuel usage lowers the community's vulnerability to energy price and supply shocks
Deferred Infrastructure	Reducing energy consumption can help defer the need for new sources of energy generation	 Reduced vehicle use will result in less wear and tear on roads, decreasing frequency of repairs
Public Health	 Reducing fossil fuel use in buildings and energy generation reduces the emission of air pollutants, improving air quality 	 Transit-oriented urban design reduces the number of vehicles on the road, reducing congestion and improving regional air quality

• Active forms of transportation (e.g., walking and biking) reduce obesity and other health risks and improve public health

Transportation Co-Benefits

7


In 2009, **Oakland adopted an ambitious** greenhouse gas (GHG) goal to reduce its core emissions 83% by 2050 from a 2005 baseline.

In 2013, Oakland's GHG emissions decreased 13% from its 2005 baseline. **If Oakland continues on its Current Trajectory, it will only achieve a 29% decrease in emissions by 2050,** accounting for population and economic growth – far short of its adopted target.

Oakland needs to accelerate action if it hopes to achieve its near- or long-term GHG goals. This report seeks to identify which actions the city needs to take.

Emissions (MT CO₂e) Oakland's GHG Emissions at Current Pace of Reductions

Progress

At its current pace, Oakland will not meet its 2050 GHG reduction goal

IB_A

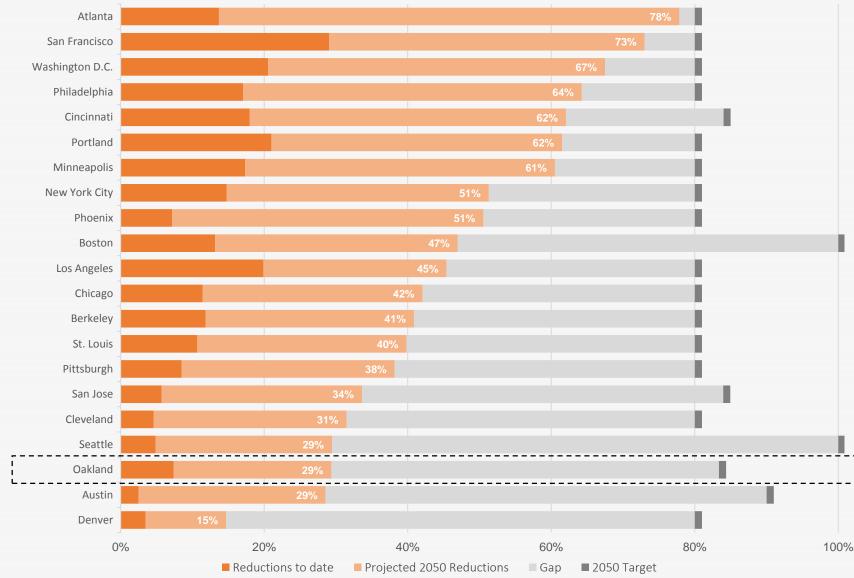
Oakland's most significant GHG reductions have come from the Port and Buildings

BA

In 2013, Oakland's largest sources of emissions were **Transportation and Land Use** (51%) and **Buildings and Energy Use** (35%). All other sources were responsible for only 14% of emissions. Oakland has made progress in reducing GHG emissions across the city. Overall, **core emissions were 13% lower in 2013 than in 2005**.

Note: While GHG data is available for 2015 in Oakland, the CURB tool and the analysis in this report is based on 2013 baseline data **Source**: Oakland 2013 GHG Inventory

Intro Progress Pathways Policy Conclus


•

Oakland is not alone; many U.S. cities are not on track to meet their climate goals and need to accelerate action

BA

Progress of U.S. cities with 80x50 GHG Goal

- U.S. cities that have set aggressive GHG reduction goals have shown demonstrable progress in reducing emissions in recent years; however, **no large U.S. city is currently on track to meet its 2050 GHG reduction goals**
- While Oakland's projected emission reductions are behind some of the leading large cities in the U.S., the city is well ahead of most cities that have not set GHG reduction goals
- Oakland's per-capita emissions are among the lowest in the nation, making further emission reductions more challenging compared with other cities that start with higher per-capita emissions

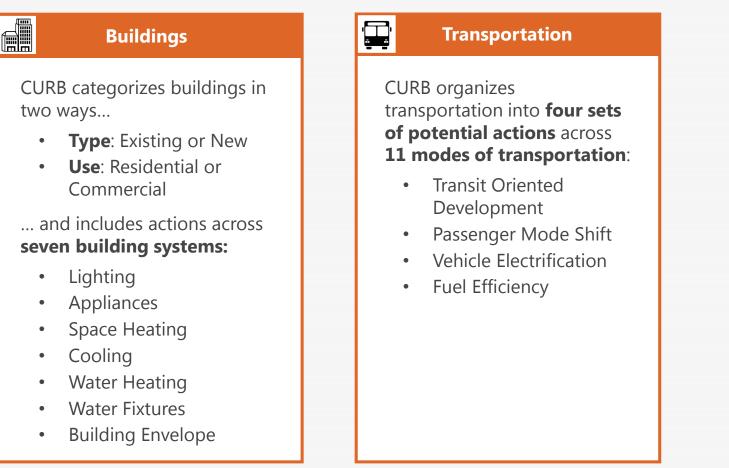
Source: Bloomberg Associates

Pathways to 80 by 50 Reduction

sent plant stated and

BAC STREET AND INC

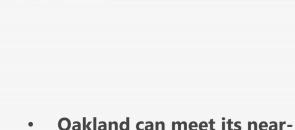
tions, success from the success

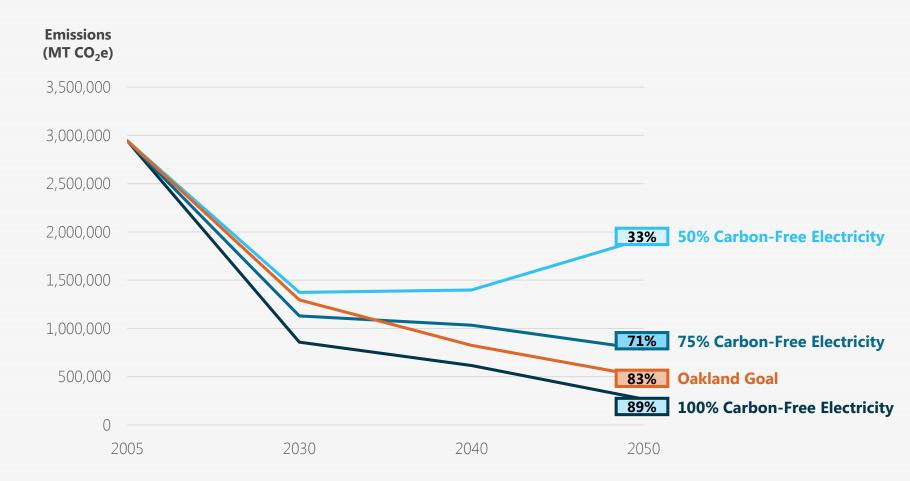

tion in such states in such

CURB enables users to understand how changes to distinct building systems and a city's transportation sector impacts GHG emissions

BA

To understand what the City needs to do to put it on a pathway to meet its GHG targets, Bloomberg Associates developed and modeled two GHG scenarios.


The first forecasts the GHG impacts of expected changes to the city's buildings and transportation systems if the City takes minimal additional action (its "**Projected Trajectory**") in 2030 and 2050. The second models the scale of change needed to achieve Oakland's long-term GHG goal ("**Deep Decarbonization**") in 2030 and 2050. Within these scenarios, the analysis focused on 60 distinct actions.


Both scenarios were modeled assuming an electric grid powered by 100% carbon-free energy, which is critical to meet Oakland's goal

BA

Pathway

- term targets under the Deep Decarbonization scenario if at least 50% of its electricity is carbon-free
- Meeting its 2050 goal without a 100% carbon-free grid would require significantly more City action than the current Deep Decarbonization scenario and is likely not possible

Emissions Reductions from Deep Decarbonization Scenario

This analysis relied on variety of sources to develop the key assumptions for the Projected Trajectory and Deep Decarbonization scenarios

BA

Document Review

Bloomberg Associates reviewed key documents, reports, white papers, and articles to better understand the current conditions of Oakland's building and transportation sectors and opportunities to reduce the GHG emissions.

Expert Interviews

Bloomberg Associates interviewed 30 local and national experts to build out the Projected Trajectory and Deep Decarbonization scenarios.

Workshops

Bloomberg Associates convened more than 30 experts at three in-person workshops to develop estimates for all CURB inputs for buildings and transportation.

Pathway

12+ buildings experts met on July 27 in Oakland City Hall.

20+ transportation experts met on September 14 in Oakland City Hall.

Key assumptions for the Projected Trajectory and Deep Decarbonization scenarios

BA

Key overarching CURB assumption

• Oakland's electricity grid will be served by 100% carbon-free energy by 2030.

Key building-related assumptions

- California's energy efficiency laws will continue to drive significant improvements in building efficiency, particularly for new buildings. These mandates should lead to near-zero net energy for all new construction by 2020 for residential buildings and 2030 for commercial properties.
- Oakland's current renovation program is reaching 1-2% of multi family properties per year. At best that program will upgrade 66% of multi-family properties in Oakland by 2050.

Key transportation-related assumptions

- California incentives will increase adoption rate of zero/low emission vehicles for private autos and light-duty trucks over historical trends. New sales of electric/low emissions vehicles will increase from current 5% of total sales to 40% by 2030 and 90% by 2050.
- Fuel efficiency improvements will continue to be driven by CAFE standards set by the State and Federal Government.
- 2030 projections do not account for autonomous vehicles due to uncertainty over near-term technological and regulatory hurdles; by 2050 AVs will be a normalized part of the transportation system.

Developing the Projected Trajectory and Deep Decarbonization scenarios

BA

Bloomberg Associates worked with more than 60 experts to estimate the current condition of building and transportation systems (e.g., efficiency and fuel sources of heating systems, mode share split, and fuel sources and efficiency of vehicles), their projected conditions in 2030 and 2050 without significant City action, and the conditions they need to be in 2030 and 2050 to enable the City to meet its GHG targets. This resulted in more than 950 data points modeled by CURB.

Projected Trajectory

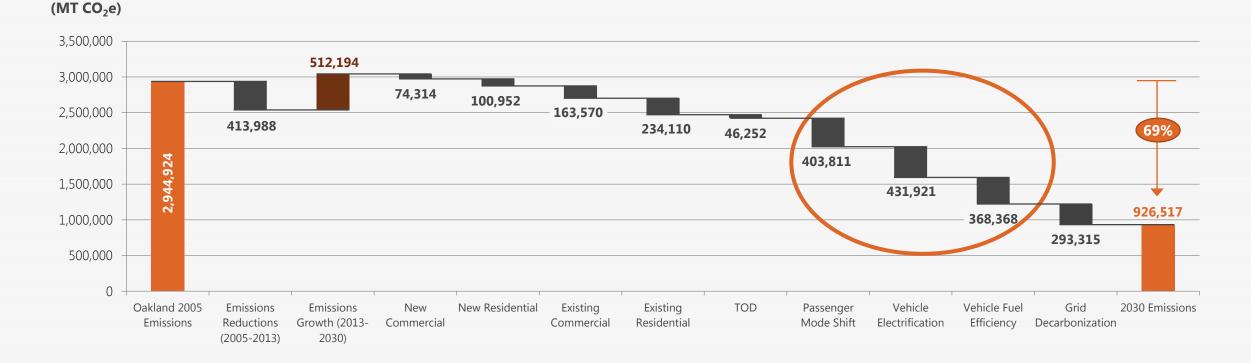
Bloomberg Associates estimated the Projected Trajectory of Oakland's emissions, assuming:

- **Projected technological advances & market adoption/penetration** (e.g., market adoption of electric heat pumps)
- Stated State & Federal policies (e.g., California Title 24 Building Code updates)
- **Existing City policies and funded programs** (e.g., Community Choice Energy program; <u>NOT</u> unfunded building retrofit plan)
- Limited City actions responding to market trends (e.g., revised building codes to legalize new technologies; <u>NOT</u> future programs incentivizing adoption of new building technology)

	CURE	3 Tool Options		Today	2030	2050		
New					Projected Trajectory	5		
Residential	Mid-F	Range Efficiency			25%	25%		
	High-			CURB Tool	Options	Today	2030 Projected Trajectory	2050 Projected Trajectory
Existing Residential	Mid-F			Private Autos Trucks	s and	69.1%	55.1%	48.0%
	High-			Motorcycle		1.6%	1.6%	1.6%
New	Mid-F		Mode	Taxi/TNC 10	r2 pass.	1.6%	10.0%	5.0%
Commercial	High-		ž	TNC Pooled	Ride	Not avail.	2.0%	5.0%
		Made Chara	tion	Shared Minik	ous	Not avail.	3.0%	10.0%
		Mode Share	orta.	Standard Bus	s/BRT	11.9%	10.0%	8.0%
Existing Commercial	Mid-F		odsu	BART		6.5%	7.0%	8.0%
	-		Transportation	Amtrak		1%	1.0%	2.0%
	High-			Ferryboat		0.1%	0.3%	0.4%
				Biking		3.3%	5.0%	6.0%
				Walking		4.9%	5.0%	6.0%

Deep Decarbonization

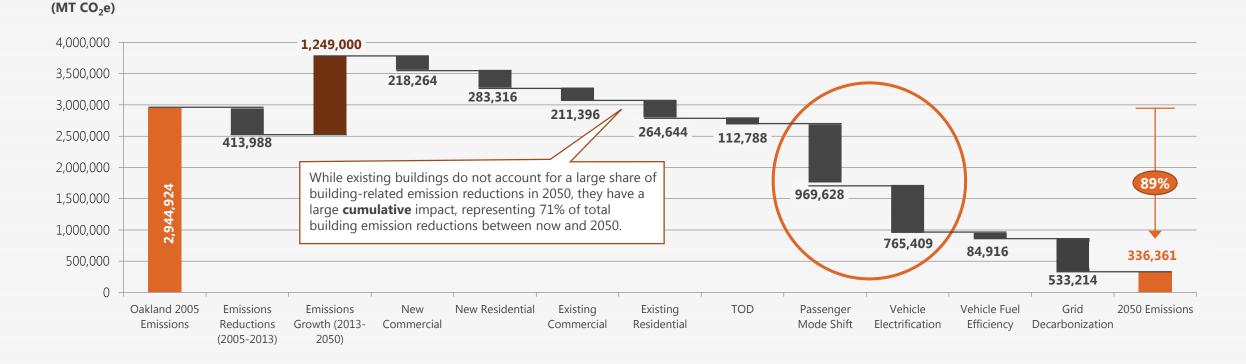
The Deep Decarbonization scenario models Oakland's GHG emissions based on the changes necessary to achieve the City's 2050 GHG reduction goal.

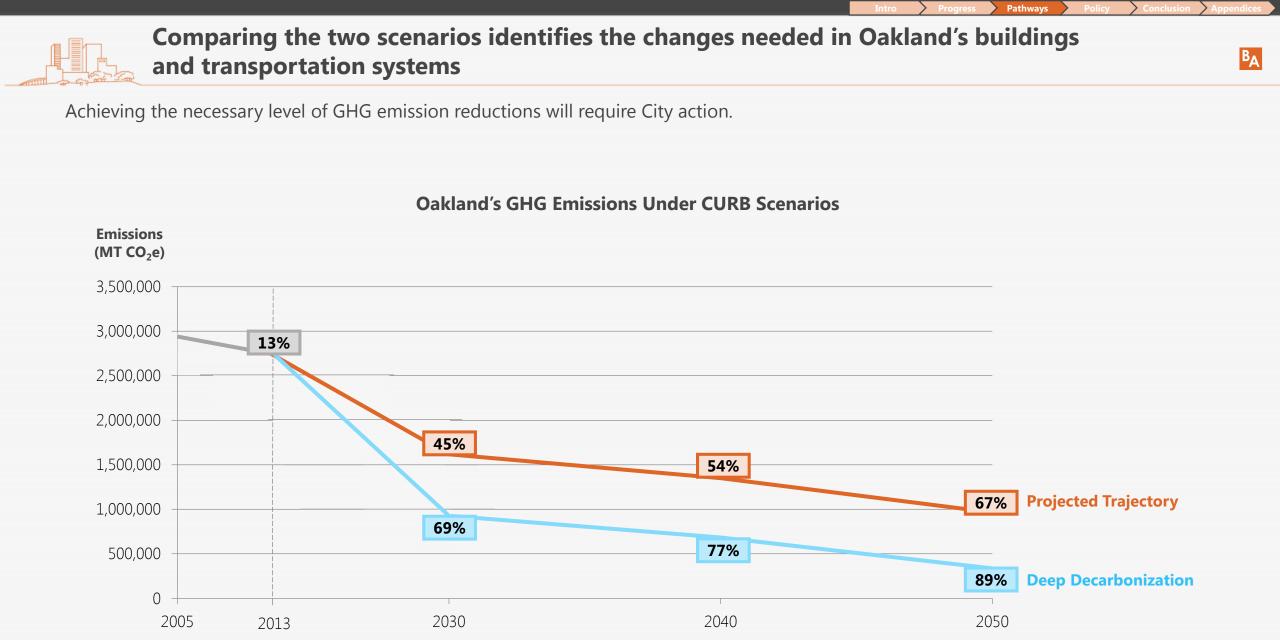

	C	URB Tool Optio	ons		Today	2030)	205)								
New						Deep Decarbo		Deej Decarbo									
Residential	Μ	lid-Range Efficier	ncy			0%		0%									
	Hi									2030	2050						
Existing				CUR	B Tool O	ptions	Т	oday	Dee	Deep arbonization	Deep Decarbonization						
Residential	Hi			Privat Truck	e Autos a s	and	69	9.1%		40.0%	20.0%						
New	М			Moto	rcycle		1	6%		1.6%	1.6%						
Commercial	Hi		Mode	Taxi/	TNC 1or2	pass.	1	6%		3.0%	3.0%						
			Š	ž	Σ	ž	ž	Ž	Ž	TNC I	Pooled Ri	de	Not	t avail.		5.0%	5.0%
			tion	Share	d Minibu	S	Not	t avail.		9.0%	10.0%						
Existing		Mode Share	orta	Standard Bus/BRT 1	1	1.9%		15.0%	19.9%								
Commercial	M		spc	BART			6	.5%	8.0%		14.0%						
	Hi		Transportation	Amtra	ak			1%		3.0%	3.0%						
			F	Ferryl	ooat		0	.1%		0.4%	1.0%						
				Biking	3		3	.3%		7.5%	10.0%						
				Walki	ng		4	.9%		7.5%	12.5%						

Emissions

Transportation offers the largest opportunities for GHG reductions in the 2030 Deep Decarbonization scenario, but Oakland must make progress in all areas

2030 Emissions Reductions in Deep Decarbonization Scenario


BA


Emissions

Shifting to less carbon intensive modes of transport and electrifying vehicles offer the largest GHG reductions in the 2050 Deep Decarbonization scenario

2050 Emissions Reductions in Deep Decarbonization Scenario

BA

21

BA

As an example, comparing adoption rates of window types highlights where gaps exist between the scenarios

City action is needed to increase adoption rates of low-energy windows in Oakland's existing building stock.

	CURB Options	Today		2030			2050	
			PT	DD	Delta	PT	DD	Delta
	Single Paned		0%	0%	0%	0%	0%	0%
New	Double-Glazed		0%	0%	0%	0%	0%	0%
Residential	Double G Low-E		98%	98%	0%	95%	95%	0%
	Triple-Glazed		2%	2%	0%	5%	5%	0%
	Single Paned	86%	46%	30%	-16%	12%	0%	-12%
Existing	Double-Glazed	14%	40%	0%	-40%	40%	0%	-40%
Residential	Low-E	-	10%	70%	60%	43%	95%	52%
	Triple-Glazed		4%	0%	-4%	5%	5%	0%
	Single Paned		5%	0%	-5%	3%	0%	-3%
New	Double-Glazed		0%	0%	0%	0%	0%	0%
Commercial	Double G Low-E		95%	100%	5%	97%	100%	3%
	Triple-Glazed		0%	0%	0%	0%	0%	0%
	Single Paned	84%	64%	34%	-30%	28%	0%	-28%
Existing	Double-Glazed	16%	27%	0%	-27%	34%	0%	-34%
Commercial	Low-E		9%	66%	57%	38%	100%	62%
	Triple-Glazed		0%	0%	0%	0%	0%	0%

More detailed assumptions can be found in Appendix A and B 'Technical Materials'.

ro > Progress > Pathways > Policy > Conclusion > Append

Short-term City actions in buildings should focus on space heating and building envelope

There are many differences in the near-term improvements expected to occur in building systems under the Projected Trajectory and what is needed in the Deep Decarbonization scenario. This is particularly pronounced and important from a GHG perspective for Space Heating and Building Envelopes, which represent almost one-third of Oakland's overall GHG reduction potential.

Gap Assessment between 2030 Projected Trajectory and Deep Decarbonization Scenarios

		New B	uildings	Existing Buildings		
System	Overall GHG↓ Potential	Residential	Commercial	Residential	Commercial	
Lighting	2%					
Appliances	1%					
Space Heating	18%					
Water Heating and Fixtures	3%					
Cooling	1%					
Building Envelope	12%					

Legend

- Low = Minimal City action required to achieve goals
 - = Moderate City action required to achieve goals
 - = Significant City action required to achieve goals
 - = Priority City action area

Medium

High

In the long-term, Oakland must eliminate fossil fuel use in all buildings

In the long-term, the biggest gap between the scenarios exists in eliminating fossil fusels for Space Heating and improving Building Envelopes in existing buildings.

Gap Assessment between 2050 Projected Trajectory and Deep Decarbonization Scenarios

	New B	uildings	Existing Buildings		
System	Overall GHG↓ Potential	Residential	Commercial	Residential	Commercial
Lighting	2%				
Appliances	1%				
Space Heating	18%				
Water Heating and Fixtures	3%				
Cooling	1%				
Building Envelope	12%				

Legend

Low= Minimal City action required to achieve goalsMedium= Moderate City action required to achieve goalsHigh= Significant City action required to achieve goals= Priority City action area

Short-term City actions needed to reduce private vehicle trips

Short-term differences exist in the share of Private Autos and Trucks, and to a lesser extent Bus/BRT, as well as the rate of vehicle electrification for Private Autos and low-capacity taxis.

	Today	2030				
		Mode S	Share			
Mode Type	Mode Share	Projected Trajectory	Deep Decarbon ization	Vehicle Electrification	Fuel Efficiency	
Overall GHG Reduction Potential		39.8	5%	50.6%	n/a	
Private Autos and Trucks	69.1%	55.1%	40%			
Motorcycle	1.6%	1.6%	1.6%			
Taxi or 1-2 Passenger TNC	1.6%	10%	3%			
TNC Pooled Ride	N/A	2%	5%			
Shared Minibus	N/A	3%	9%			
Bus/BRT	11.9%	10%	15%			
BART	6.5%	7%	8%			
Amtrak	1%	1%	3%			
Ferryboat	0.1%	0.3%	0.4%			
Biking	3.3%	5%	7.5%			
Walking	4.9%	5%	7.5%			

	2030
Overall GHG ↓ Potential	5.6%
New TOD Households	

Pathways

Long-term City action needed to electrify key vehicle types and shift to low-carbon travel modes

In the long-term, significant gaps will continue to exist in the mode share and electrification of private vehicles. Gaps also exist in the share of passengers taking mass transit and walking.

	Today	2050				
		Mode	Share			
Mode Type	Mode Share	Projected Trajectory	Deep Decarboniz ation	Vehicle Electrification	Fuel Efficiency	
Overall GHG Reduction Potential		39.8	3%	50.6%	n/a	
Private Autos and Trucks	69.1%	48%	20 %			
Motorcycle	1.6%	1.6%	1.6%			
Taxi or 1-2 Passenger TNC	1.6%	5%	3%			
TNC Pooled Ride	N/A	5%	5%			
Shared Minibus	N/A	10%	10%			
Bus/BRT	11.9%	8%	19.9%			
BART	6.5%	8%	14%			
Amtrak	1%	2%	3%			
Ferryboat	0.1%	0.4%	1%			
Biking	3.3%	6%	10%			
Walking	4.9%	6%	12.5%			

	2030
Overall GHG ↓ Potential	5.6%
New TOD Households	

Pathways

- = Minimal City action required to achieve goals
- = Moderate City action required to achieve goals
- = Significant City action required to achieve goals
- = Priority City action area

Low

Medium

High

The CURB analysis shows that a few changes are key to reducing Oakland's GHG emissions

BA

While cities must take an "all of the above" approach to climate action to achieve deep reductions, the analysis shows that not all actions are equal. Given the projected changes that will occur to Oakland's building and transportation systems as new technologies are adopted and State and Federal regulations take effect, there are a few changes that have an outsized impact on the city's GHG emissions.

Shift to 100% carbon-free energy

3

Eliminate fossil fuels from building heating systems

Improve building insulation and windows

Significantly shift people away from private auto trips

Accelerate the electrification of vehicles

Policy Considerations

-

14.0

and store and hand have

THE REAL PROPERTY AND

the same later state water same

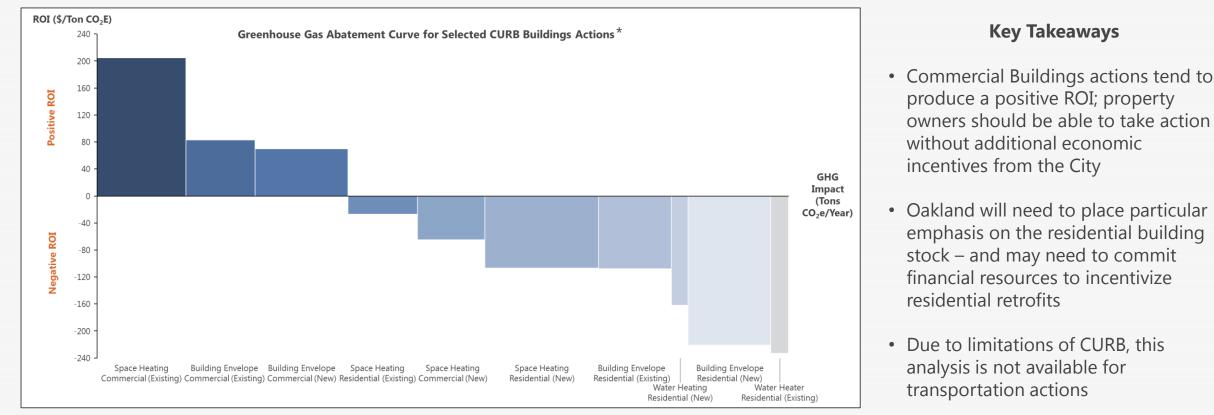
ARE THE PARTY NAME AND

an land some land, and

To achieve the changes identified in this analysis, Oakland should focus on a few key actions

BA

This analysis identifies the specific actions the City needs to take to change its building and transportation systems to go beyond the Projected Trajectory and achieve its GHG reduction goals.


	Near-Term Actions (2018-2030)	Long-Term Actions (2030-2050)
	 Update codes for new buildings to eliminate gas heating systems by 2030 Accelerate the electrification of space heating systems and dramatically improve building envelopes in existing buildings 	• Eliminate fossil fuel use in all buildings
Ţ,	 Increase mass transit options and coverage Continue to build out pedestrian and bike infrastructure Accelerate the electrification of private vehicles and low capacity taxi/TNC vehicles 	 Continue to support large regional activities to expand transit options Prioritize low carbon modes of transportation in infrastructure investments Ensure the electrification of shared mobility vehicles

Many of the buildings actions needed to achieve Oakland's goal have a positive ROI; others may require financial incentives or mandates for widespread adoption

Oakland's GHG Abatement Curve outlines the cost effectiveness of each building action relative to its potential impact on GHG emissions; however it does not identify who pays that cost or receives that benefit.

*Collectively, all other buildings actions reduce GHG emissions by 32,000 tons of CO₂e per year (6% of total buildings-related reductions), at a weighted average ROI of \$-1,000.

Successful cities use four key types of policies to achieve transformational change and reduce GHG emissions

3

Lead by Example

Small in overall GHG impact, but critical to provide highlyvisible examples, demonstrate value and pilot new technologies.

2 Incentivize Action

Spur early action through incentives that catalyze other actors, create examples, and produce more reductions sooner (greater cumulative impact).

Require Results

Enact performance-based standards or targets that do not target specific actors or technologies, but focus on impacts.

4

Takes full advantage of City policymaking, regulatory, and enforcement authorities. Principal burden of implementation is on private actors with City setting policy, enforcing actions, and potentially providing assistance.

The City of Oakland has several efforts planned or underway impacting GHG emissions from the buildings sector

Policy/Program	Status	Description	Impact
BayREN Single Family and Multifamily Renovation Programs	Operational since 2013	Since 2013, both the Single Family and Multifamily programs have provided technical assistance and rebates for energy efficiency retrofits across the 9 county Bay Area region. Region-wide the Single Family program has delivered 5,407 projects and the Multifamily program has delivered 21,306 retrofitted units as of September 2017.	Pilot resulted in energy retrofits of an estimated 1,400 homes in Oakland. Improved efficiency by 23% in single family, 15% in multifamily.
Green Building Ordinance for Private Development	Completed November 2010. Effective January 2011	Ordinance that requires high levels of energy performance in new construction for residential and commercial private development, as well as additions and alterations to existing buildings.	Lowered energy use in new construction by an estimated 10% from State code.
PACE Financing	First provider authorized in 2010; 4 additional providers approved in 2015. Ongoing in market	Offer property-based financing home improvements including but not limited to energy efficiency, water efficiency, solar energy improvements. While property owners enroll in the program voluntarily and this program is not directly administered by the City, the City of Oakland must approve companies to contract in Oakland.	545 PACE-financed retrofits were completed in FY 2016. Lifetime savings from these projects are 17,244 metric tons of CO2 and 45 GWh of electricity use avoided.
Downtown Commercial Retrofit Program	Completed	Enhanced incentives and technical assistance using ARRA funding to help downtown commercial property owners improve energy efficiency. Called the "Oakland Shines" campaign, it emphasized Class B buildings as part of its plan to reach 80% of downtown businesses.	Project generated 191 retrofits of commercial buildings, with 4.5 GWh of electricity use avoided and 67,470 therms of gas avoided.
Weatherization and Energy Retrofit Loan Program	Completed; looking to expand	Retrofit Program serves 20-40 properties per year, offers loans of \$6,500 to \$30,000 to owner occupied low to moderate income households. Loan funds can be used for variety of energy efficiency projects.	Reduced energy bills by an average of 30%.

Progress Pathways Policy Conclusion

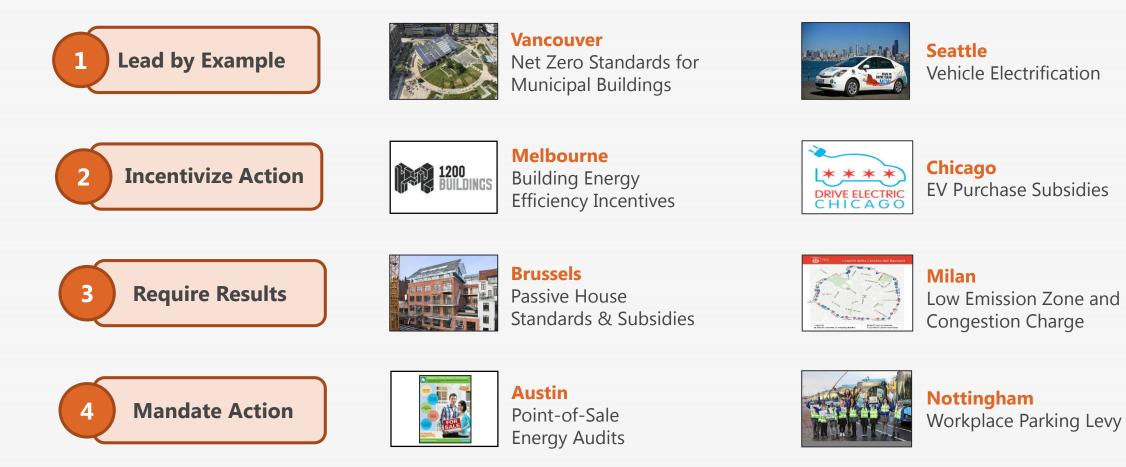
The City of Oakland has several efforts planned or underway impacting GHG emissions from the transportation sector

City Policy/Program	Status	Description	Impact
OakDOT Strategic Plan	Released 2017	The Strategic Plan outlines the Departs of Transportation's goals and strategies for improving equity, sustainable infrastructure, mode share, safety, and government responsiveness.	The transportation policies, plans, and programs outlined in this table are all so recent that it is too early to assess their impacts. It is also difficult to assess local impacts without understanding the regional impacts, due to the geographic centrality of Oakland within the transportation flows of the broad Bay Area region. Over time, it will be important to measure the impact through changes to mode share and vehicle miles travelled.
Bicycle & Pedestrian Plans	Pedestrian Plan was accepted June 13th 2017; Bicycle Plan Update in progress (first plan passed in 2007)	The Pedestrian Plan outlines the Department of Transportation's goals to improve walkability and pedestrian safety, repair existing streets to encourage walking, and increase funding for pedestrian improvements. The Bicycle Plan details proposed new bike facilities in Oakland. 48 miles of new bike paths were constructed between 2007 and 2016.	
Complete Streets Policy	Adopted in April 2013	Plan to provide streets that are safe and convenient for all users. Actions include streetscape design, traffic signal upgrades, and bicycle and pedestrian facilities design.	
Expansion of Ford GoBike Bike Share System	System launched and in process of expansion.	Ford GoBike was established in 2016. By the end of 2017, the City of Oakland will have 70 parking stations and 850 bikes.	
Expansion of BRT corridors	Under construction beginning in 2017	Implementing BRT along International Boulevard, which carried 12% of AC Transit patrons in 2011 (more than any other corridor).	
Parking and Mobility Policies and Programs	Part of OakDOT Strategic Plan	Parking subsidies for downtown employees were discontinued in 2010. Special parking permits for designated car share organizations since 2015. Developing demand-based parking programs.	

Actions in other cities offer examples of what Oakland could do to reduce emissions from buildings

Lead by	Not exhaustiv	re
Example	 Require all new municipal buildings to meet net-zero energy standards (Vancouver) 	
Incentivize	 Launch GHG/energy reduction challenge programs for targeted building types (e.g., hotels, offices) (New York City, Chicago) 	
Leaders	 Provide grants, loans, or rebates for retrofits in targeted building types (e.g. affordable housing) or systems (Toronto, Denver, Palo Alto) 	
	• Exempt buildings from benchmarking or audit requirements for taking specified actions (Boston, New York City)	
	 Enact performance-based energy codes that require set % of GHG reductions from individual buildings (New York City, proposed) 	
Require	 Require targeted buildings to undergo retro-commissioning on a regular basis (New York City) 	
Results	 Conduct periodic compliance studies of energy codes or use a 3rd party compliance review for code enforcement (Pittsburgh) 	
	Require point-of-sale energy audits (Austin)	
	 Mandate that building systems be brought up to current code upon any updates to those systems (Berkeley, New York City) 	
Mandate	 Require new or substantially retrofitted buildings to meet passive house standards (Brussels) 	
Action	 Require public displays of energy performance (New York City) 	
	 Require targeted buildings to perform annual benchmarking (27 U.S. cities) 	
	 Require targeted buildings to perform regular audits (New York City) 	

Actions in other cities offer examples of what Oakland could do to reduce emissions from transportation


Not	OV	haustive
		IUUNUVA

Lead by Example	 Install City-owned EV chargers (Raleigh, NC) Electrify public transit vehicles and City-owned vehicles (Los Angeles, New York City, Seattle) Support electric car share systems (Paris, Los Angeles)
Incentivize Leaders	 Streamline permitting for electric vehicle charging and service equipment (Chicago, Austin) Tax credits for alternative fuel charging (Washington D.C.) Engage private fleets to accelerate conversion to low-emission vehicles (Hamburg) Zero/low emission vehicle purchase subsidies (Seattle, Riverside)
Require Results	 Require transit expansion to serve dense areas outside of city center (Boston, Johannesburg) Preferred treatment for zero/low emission vehicles, including fast lanes, parking discounts, reduced congestion fee (San Jose, Sacramento, Milan)
Mandate Action	 Create low emission zones (London, + 220 other cities) Congestion pricing (Oslo, London, Stockholm) Vehicle bans in city centers (Oslo, Madrid – planned)

Several cities have enacted programs to accelerate change in the specific building and transportation systems targeted for Oakland

Bloomberg Associates produced case studies of eight programs implemented in other cities that are accelerating change in the buildings and transportation systems targeted for Oakland.

Net Zero Standards for Municipal Buildings: Vancouver

Vancouver has required all new City-owned buildings, including housing, offices, and schools, to meet LEED Gold standards since 2004 and will eliminate GHG emissions from all new City-owned buildings starting in 2018.

Program Overview

In 2004, Vancouver passed the **Green Building Strategy that mandated all new City-owned buildings be designed to LEED Gold standards.**

In 2015, the **Renewable Energy Strategy for City-Owned Buildings** expanded Vancouver's ambitions, setting goals to:

- Build all new city-owned buildings will be built to zero emissions standards beginning in 2018
- Reduce GHG by 55% and achieve 70% renewable energy by 2025
- Reach 100% renewable energy and eliminate all GHG emissions across all municipal buildings by 2040

Results

- Municipal buildings have seen a 23% decrease in total annual green house gas emissions between 2007 – 2016
- Demonstrating the value of city leadership: Vancouver has experienced a 20% decrease in annual GHG emissions for all new buildings between 2007- 2016, despite less strict standards for non City-owned buildings
 - By 2013, Vancouver surpassed 220 LEED certified projects

Note: Currently, Vancouver's grid is more than 30% renewable, which can supply electricity demand in buildings. Further investments in renewable generation capacity will aim to supply transportation demand and can contribute to building's reduction in remaining fossil fuel use (primarily natural gas).

Melbourne's 1200 Building Program incentivizes building upgrades for energy and water efficiency by providing information and access to creative financing options.

Program Overview

Launched in 2010, the 1200 Buildings Program targets certain ownership groups – 'institutional leaders' as well as underperforming buildings – offering these building owners information on and incentives for efficiency upgrades. The program provides:

- Large-scale renewable electricity procurement participation in the program gives businesses the option to purchase renewable energy through the Melbourne Renewable Energy Project, a long-term purchasing contract held by the City of Melbourne that provides 100% renewable energy
- Help accessing Environmental Upgrade Financing a system where building owners can enter an
 agreement with a private finance institution and the City of Melbourne's Sustainable Melbourne Fund (SMF),
 for a loan to finance building upgrades. The building owners are able to repay their loan through the SMF
 with added incentives such as longer lending periods, greater security and lower rates
- Information on the building retrofitting and solar opportunities the organization helps businesses understand the costs, processes and other considerations of installing solar panels and other upgrades to a building

Results

- By 2013, the program helped fund **\$4.9 million in retrofits that estimate a savings of 5,350 tons of CO2e emissions a year**
- By 2015, the program had acquired **53 signatures from major commercial companies** including GPT Group, ING, Stockland and Asia Pacific Group, to enter the program
- Now 16 other cities across Australia have adopted programs for Environmental Upgrade Financing

Cost	TBD from the Sustainable Melbourne Fund for financing
Status	Launched 2010
Action Type	Incentivize leaders

Passive House Standards and Subsidies for New Buildings: Brussels

Policy

Brussels requires all new buildings, including houses, offices, and schools, to meet rigorous energy-efficiency regulations – known as Passive House standards – for heating, cooling, and energy consumption.

Program Overview

Passive House energy legislation was passed in two parts:

- In 2007, Brussels passed an ordinance to regulate the energy performance of buildings and encourage the early adoption of Passive House standards. The performance requirements apply to energy consumption, heating and cooling, and building envelope; they vary for new buildings and retrofits
- In 2011, Brussels passed the Passive House Law requiring all new buildings to comply with ultra-energy efficiency standards, beginning in 2015

Critically, Brussels also provided financial incentives for the creation of Passive House buildings.

- From 2007 to 2014, the Exemplary Buildings (BatEx) program utilized funds from energy providers to award €45 million (~\$55 million) in subsidies.
- BatEx funded projects that strived to be zero-emission, prioritized the use of eco-friendly construction materials, were simple and feasible in technical and financial terms, and had reasonable payback timelines.

Results

The combination of stringent regulations and subsidies have resulted in:

- An initial 17% reduction in energy consumption (in comparison with buildings not covered) and a new reduction of 25% in energy consumption after the 2011 law
- 243 BatEx projects, representing 6.7 million square feet of new Passive House buildings
- 3,000 additional Passive House buildings constructed in Brussels (beyond BatEx projects)

	brussels environment .brussels ᡐ
Policy Area	Eliminate fossil fuel use in new buildings
Cost	BatEx distributed €45 million (~\$55 million) in subsidies to winning projects
Status	Passed 2011, in effect as of 2015
Action Type	Mandate action, incentivize leaders

Point of Sale Energy Audits: Austin

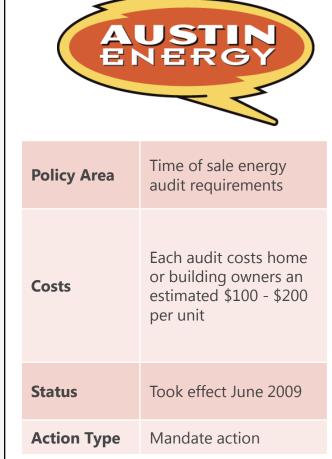
Austin's Energy Conservation Audit and Disclosure (ECAD) ordinance requires energy audits and disclosures for all homes and buildings within Austin City limits, served by Austin Energy, that meet certain age/size requirements. As part of a real estate transaction, ECAD's energy disclosures uncover energy improvement opportunities. Non-compliance with the ordinance can result in a misdemeanor and fines.

Program Overview

ECAD was approved by Austin City Council in November 2008 and took effect in June 2009. **It requires residential building owners to disclose a home energy audit, conducted by a certified ECAD Energy Professional, prior to sale.** An ECAD energy audit is required for:

- Residential properties that are 10 years or older and results must be disclosed to potential buyers
- **Multi-Family buildings that are 10 years or older** and results must be made available to all potential and current residents
- **Commercial buildings that are 10,000 sq. ft. or larger** and energy ratings must be reported to the City by June 1 of each year

EACD auditors evaluate properties and make recommendations for improving the energy-efficiency of windows, attic insulation, air conditioning and heating systems, and the air duct system.


• Austin Energy provides a variety rebates, incentives, and loans for energy-efficiency upgrades.

Results

An estimated 98% of the 3,000 to 4,500 homes that are audited each year receive at least one energy efficiency recommendation:

- 68% need in-home weatherization
- 58% need solar shading

- 68% need HVAC air duct system renovation
- 79% need additional attic insulation
- Although ECAD does not require energy improvements, Austin Energy provides a variety of energy efficiency upgrade incentives, which are estimated to save an annual:
 - ~8 million kWH of energy (equivalent to powering 650 homes)
 - ~5,000 tons of CO2

Drive Clean Seattle is designed to accelerate the city's transition away from fossil fuels. By investing in publically accessible charging stations, it aims to reduce GHG emissions from the City's fleet 50% by 2025 and cut oil used for transportation 50% by 2035.

Program Overview

Mayor Murray announced the Drive Clean Seattle resolution in 2016, which was passed by the City Council in late 2016. **The program invests in publicly accessible charging stations** to create a robust network of charging infrastructure. Seattle plans to **install 400 charging stations over the next 5-7 years.**

In addition to charging stations, the program includes plans to:

- **Electrify the City's fleet** to reduce fleet's GHG emissions by 50% by 2025. Will achieve this through a combination of cleaner fuels, more efficient vehicles, and significant investment in electric vehicles
- **Electrify existing transit options** by converting Seattle's trolley bus, streetcar, and light rail systems to carbon-free electricity. Also supports the expansion of light rail throughout the region and partners with regional transit agencies to identify opportunities to continue to use carbon-free electricity as a transit fuel
- **Review City regulations, policies, and codes** to encourage electric vehicles and private sector investment in cleaner transportation choices

Drive Clean Seattle required a coordinated effort across multiple city departments, including the Office of Sustainability and Environment, the Department of Transportation, Seattle City Light (the City's municipal electric utility), the Department of Construction and Inspections, and the Department of Finance and Administrative Services.

Results

As of May 2017, Seattle had:

- Installed 100 charging stations at 20 publicly locations
- Joined with Los Angeles, San Francisco, and Portland in sending to automakers a request for information — the first step in a formal bidding process —to buy or lease larger and heavy-duty electric vehicles for their fleets with plans to purchase about 850 over the next three years

Policy Area	Vehicle Electrification
Costs	Current budget includes ~\$1.7 million for 170 charging stations Total cost of charging stations ~\$5 million (\$10-\$15k per station)
Status	In-progress, launched in 2016
Action Type	Lead by example, incentivize leaders

EV Purchase Subsidies: Chicago

Drive Clean Chicago is a \$14 million incentive program operated by the Chicago Department of Transportation (CDOT) with funding from the Federal Congestion Mitigation Air Quality program. It provides vouchers and rebates to fleet owners, leased vehicle operators, manufacturers, vehicle technology vendors, and station developers to accelerate the adoption of alternative fuel vehicles and infrastructure.

Program Overview

Drive Clean Chicago began in 2016. Funds provide:

- **\$10 million in vouchers for all-electric and hybrid trucks and busses**; commercial truck owners or leasers can receive up to \$30k for the purchase of a new vehicle that operates 75% of the time in Chicago
- **\$1.275 million in vouchers for alternative fuel taxis**; taxi fleet owners can receive up to \$10k towards conversion or incremental cost of a new vehicle that operates 75% of the time in Chicago
- **\$1.425 million in rebates for CNG fueling and DC fast charging stations** located in Chicago; fleet owners/station owners can receive a 30% rebate on capital cost for station development

Results

As of July 2017, CDOT had awarded the full \$10 million for trucks and \$1.275 million for taxis, as well as \$600k for charging stations.

With these funds, Drive Clean Chicago has supported the deployment of more than 400 carbon-free vehicles for area fleets, which has resulted in the country's first privately-run 100% zero emission electric bus fleet for tenants at the Prudential Plaza-Aon building. It has also helped to purchase/build 220 alternative fuel stations. Drive Clean Chicago's successes have led to an estimated:

- Savings of 200,000 barrels of oil
- Reduction of 2,585 metric tons of GHG emissions

Policy Area	Vehicle Electrification
Costs	\$14 million
Status	Passed in 2016, applications accepted through 2018
Action Type	Incentivize leaders

The City of Milan has implemented a Low Emission Zone and Congestion Charge that aim to reduce traffic congestion and improve air quality. Vehicles entering the zoned area in the city center are automatically charged a daily fee that funds sustainable mobility projects.

Program Overview

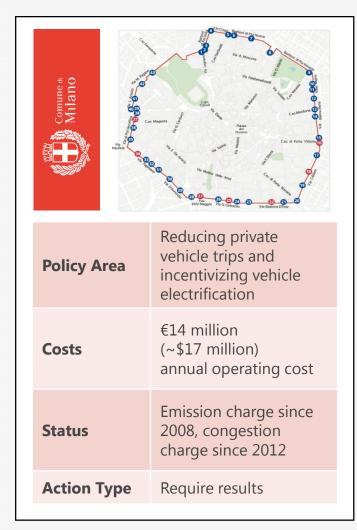
In 2008 Milan implemented a **pollution charge based upon vehicle pollution class**. Vehicles entering an 8.2 km² (4.5% of city) area in the center of the city are **charged €0-10 (~\$0-12)**, **based upon the emission intensity of the vehicle**.

• The system is operated through 43 electronic gates using automatic number plate recognition technology that identifies the pollution class of the vehicle from vehicle registration data

After a **public referendum received 79% support in 2011, the scheme was expanded to include a congestion charge** beginning in 2012. Vehicles entering into the regulated area are charged €5 (~\$6) for daily access.

- Entrance tickets vary for residents, service vehicles, and parking garages and all types of public transit and low emission vehicles are exempt from the charge
- Beginning in 2017, diesel vehicles without particulate filters are banned from entering Area C; the ban is in effect during the day Monday-Friday and does not extend to residents

Results


Total revenue generated in 2012 was €30 million (~\$36 million). These funds are invested in sustainable mobility projects, including:

- €3.8 million (~\$4.5 million) in park and ride facilities on Metro Line 3
- €3 million (~\$3.6 million) in improvements to bike share system
- €10 million (~\$12.2 million) investments in public transport fleets

Area C has seen a 34% decrease in traffic congestion, 24% reduction in road casualties, and 49% reduction in circulation of polluting vehicles. Various pollutants have also been reduced:

- 18% reduction in total PM10
- 10% reduction in exhaust PM10
- 42% reduction in Ammonia

- 18% reduction in nitrogen oxide
- 35% reduction in carbon dioxide

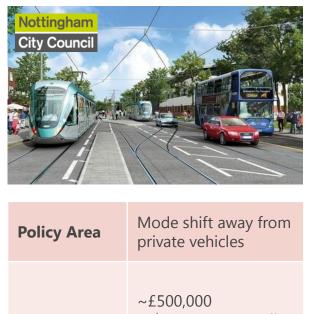
Workplace Parking Levy: Nottingham

Nottingham's Workplace Parking Levy (WPL) is a congestion charge that encourages employers to reduce the number of free staff parking spaces. Funds raised from this annual fee go directly towards improving the city's transport infrastructure.

Program Overview

In 2012, Nottingham implemented an annual parking levy, which was charged to all employers who provide 11 or more workplace parking places.

- WPL charges employers an annual fee of £379 (~\$525) per parking space; the levy affects 42% of Nottingham's parking spaces a total of 25,000 across the city
- All revenue generated by the WPL goes directly towards improving the city's public transport infrastructure
- WPL is implemented primarily through an online portal, where employers can pay annual fees. The implementation of the online payment system minimizes costs for the city


Results

The levy raises ~£9 million (~\$12.5k) annually, which is used to fund improvements in the city's transport infrastructure, including:

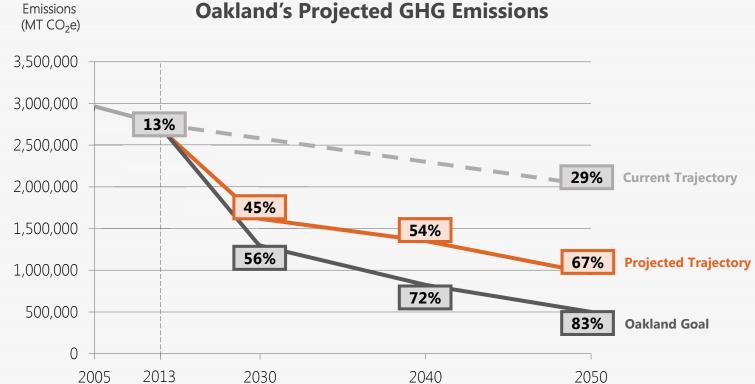
- Purchase of 45 new fully electric buses
- Doubling the size of the city's tram network
- £6.1 million (~\$8.5 million) investments in improved cycling routes

In its first 3 years of operation, the workplace parking levy:

- Contributed to a 33% overall decline in carbon emissions (compared to 2005 levels) of which 13% is estimated to be as a result of modal shift to public transport, biking, and walking
- Initial academic research has shown the policy has a statistically significant impact on traffic congestion, with an associated 40% rise in public transport use

Policy Area	private vehicles
Costs	~£500,000 (~\$700,000) annually (<5% of what WPL generates each year)
Status	On-going, began in 2012
Action Type	Mandate action

Without additional City action, Oakland will not meet its 2050 GHG reduction goal



In 2013, Oakland's GHG emissions decreased 13% from its 2005 baseline. If Oakland continues on its Current Trajectory, it will only achieve a 29% decrease in emissions by 2050, accounting for population and economic growth – far short of its adopted target.

Even accounting for expected changes, including market trends and technological advances, State and Federal policies, and adopted and funded City policies (Projected Trajectory) Oakland will not achieve its 2050 goal.

Meeting the 2050 goal is technically feasible,

but will require significant City leadership, investment, and policy changes in both the nearterm and long-term.

Oakland's Projected GHG Emissions

intro 🔪 Progress 🔪 Pathways 🔪 Policy 🔷 Conclusion 🔪 App

To meet its 2050 GHG goal, Oakland must take targeted near- and long-term actions to achieve five key changes to its buildings and transportation systems

BA

Five changes need to be achieved to meet Oakland's GHG reduction goal:

- Shift to 100% carbon-free energy
- 2 Eliminate fossil fuels from building heating systems
- Improve building insulation and windows

Accelerate the electrification of vehicles

City action is needed to achieve these changes:

Near-Term Actions (2018-2030)

- Update codes for new buildings to eliminate gas heating systems by 2030
- Accelerate the electrification of space heating systems and dramatically improve building envelopes in existing buildings
- Increase mass transit options and coverage
- Continue to build out pedestrian and bike infrastructure.
- Accelerate the electrification of private vehicles and low capacity taxi/TNC vehicles

Long-Term Actions (2030-2050)

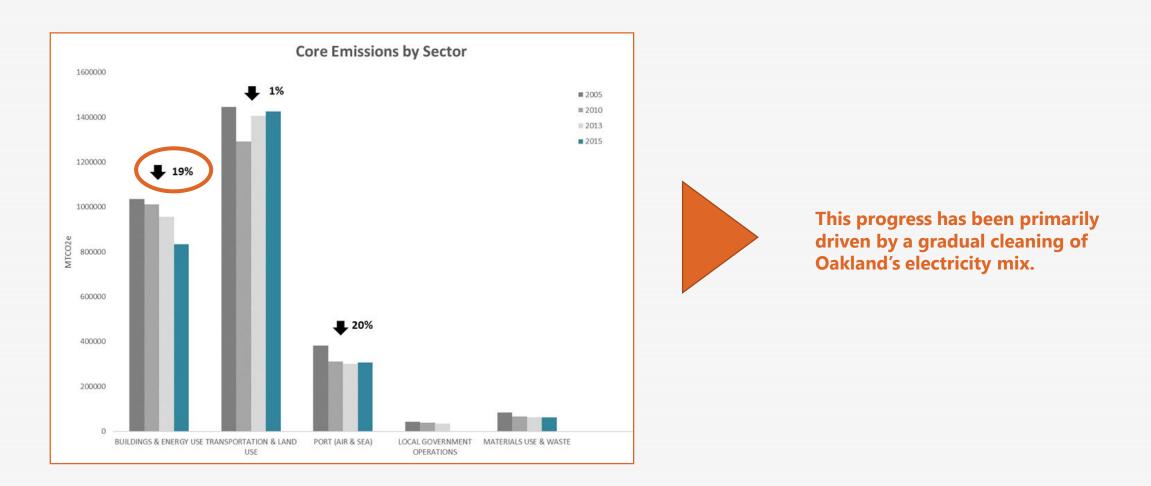
- Eliminate fossil fuel use in all buildings
- Continue to support large investments in transit
- Prioritize low carbon modes of transportation in infrastructure investments
- Ensure the electrification of shared mobility vehicles

Serve as the basis for the update of Oakland's Energy and Climate Action Plan (ECAP)

Incorporate top CURB actions into the Capital Improvement Program (CIP) prioritization framework

Incorporate top CURB actions into other funding processes

Use priorities as key inputs into department-level plans and policies


- The action areas identified in this analysis should serve as the focus for policy priorities in the next ECAP, to be released in 2020
- The technical and financial components of this analysis can help justify Oakland's sustainability priorities to Council and the public
- The changes and actions identified by this analysis provide a clear set of criteria that should be included as one factor in evaluating potential projects for City investments
- Investments that advance one of the priority changes (e.g., shift people from private auto trips) should be given additional credit during project prioritization
- The City should leverage other funding sources (e.g., seismic retrofits, affordable housing) that impact Oakland's buildings and transportation systems to address priority actions where appropriate (e.g., including window upgrades as part of seismic retrofits, ensuring high efficiency heating systems in affordable housing)
- Department plans, such as neighborhood-specific plans, should incorporate policies that align with the changes identified by this analysis (e.g., shifting people away from private auto trips)
- Scan citywide codes and policies to identify opportunities to achieve the priority changes (e.g., update the City's Green Building Ordinance with a focus on space heating)

Building emissions have fallen significantly from the 2005 baseline

While CURB uses a 2013 baseline and the analysis used that dataset, it is important to acknowledge progress that Oakland has made in more recent years. Oakland's most recent data shows that 2015 emissions from building and energy use were 19% lower than the 2005 baseline.

Achieving further reductions will require Oakland to change the specific systems within buildings

Buildings

CURB provides 28 different options for modeling actions within Oakland's buildings.

CURB categorizes buildings in two ways...

- 1. Type: Existing or New
- 2. Use: Residential or Commercial

... and models the impact that **seven** building systems have on building-related GHG emissions:

- Lighting
- Appliances Space Heating
- Water Heating
- Water Fixtures
 - Building Envelope

Cooling

•

2030 and

2050 if

2030

target is

reached.

Cooling

Building

Envelope

1%

12%

Methodology

501.239

1,751,152

Hotels

Warehouse

New

Commercia

Existing

Commercia

High-Range

Efficiency

Standard

Mid-Range

Efficiency

High-Range

Efficiency

75%

55%

45%

75%

50%

45%

5%

100%

0%

55%

45%

Bloomberg Associates utilized a four-step process to identify where City action is needed to achieve Oakland's GHG goal, based on two scenarios for 2030 and 2050:

- Projected Trajectory projects the expected impacts of market forces together with State and Federal policies
- **Deep Decarbonization** projects where the City needs to be to achieve its GHG reduction goals

Gather current	baseline	systems and	J 📦	Projected Develop 2030 Projected Tra Decarbonizat based upon i gathered dur workshops, a City of Oaklar	carbon) and 20 jectory a ion Scer nformati ing inter nd discu	ization 50 and Deep arios, ion views,		Trajec Decar areas actior	fy gaps bet tory and D bonization where add	to identify itional City ed to achie			Overlay potenti	' gap ana al GHG r to identi	y Action alysis with eduction fy priority	ı	
	CURB Options	Baseline		CURB Options	Today	2 Projected Trajectory	030 Deep Decarbonize		New B	uildings					ew dings		sting dings
		Sq Meters	New Residential	Mid-Range Efficiency	25%	25%	0%					System	GHG ↓	Residential	Commercial	Residential	Commercial
	Retail	2,277,137		High-Range Efficiency	75%	75%	100%	Resid	lential	Comr	nercial		Potential	2030	2030	2030	2030
	0.0	2 200 504		Standard	25%	25%	0%	2030	2050	2030	2050	Lighting	2%				
	Office	3,398,594	Existing	Mid-Range Efficiency	61%	61%	15%	City action	No	City action	No	Appliances	1%				
Building Type	Hospitals	563,656	Residential	High-Range Efficiency	14%	14%	85%	required to shift remaining	additional City action required	required to shift remaining	additional City action required	Space Heating	18%				

new

buildings

to high

efficiency

appliances

2030 and

2050 if

2030

target is

reached.

new

buildings

to high

efficiency

appliances

Bloomberg Associates reviewed key documents

Bloomberg Associates reviewed key documents, reports, and white papers to understand the condition of Oakland's building stock and opportunities to reduce emissions from buildings sector.

End Use Surveys

CA-Focused Technical Studies

LBNL 100698

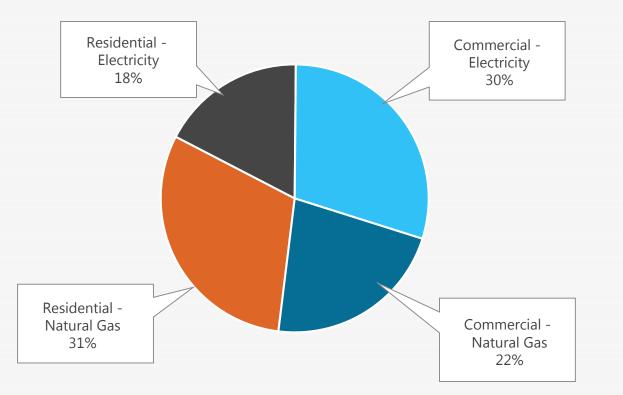
CALIFORNIA'S GOLDEN ENERGY

EFFICIENCY OPPORTUNITY:

Ramping Up Success to Save Billions and Meet Climate Goals

~

National Best Practices



Publically available data provides a broad overview of Oakland's current building stock...

Oakland's current building emissions are evenly divided across four sources.

MT C0₂e Attributable to Oakland's Buildings

Estimated Footprint of Oakland's Buildings

Building Type	Square Meters
Retail	2,277,137
Office	3,398,594
Hospitals	563,656
Education	174,876
Hotels	501,239
Warehouse	1,751,152
Total Commercial	8,666,654
Low Income Res	2,525,842
Low-Med Res	2,545,119
Med-High Res	4,709,659
High Income Res	3,258,703
Residential Total*	13,039,422
Grand Total	21,706,076

*Residential sq. m based on CURB extrapolation from number of housing units

... but must be supplemented by a number of assumptions in CURB

Expert interviews, literature review, and in-person workshops helped refine core assumptions related to Oakland's baseline conditions.

Key Baseline Assumptions Include:

- Population Growth Rates (1.09% per year)
- Increase in Housing Units (0.9% per year)
- Increase in Commercial Sq. Footage (1.2% per year)
- Building Redevelopment Rates (1% per year)
- Proportion of Housing by Housing Type (53% apartment / 47% house)

Based on these baseline conditions, CURB estimates 71% of buildings emissions can be reduced by focusing on the existing building stock

CURB uses these baseline inputs and assumptions to develop a preliminary analysis of where potential emissions reductions could come from. This information can be used to quickly identify which actions are likely to have the greatest impact.

Potential Reduction in Building Emissions through Improved Building Systems

Source: Bloomberg Associates Analysis, CURB

The analysis developed two scenarios for 2030 and 2050 to compare against Oakland's GHG reduction goals

The next step of the analysis develops and compares scenarios for 2030 and 2050 alongside Oakland's GHG reduction goals, to better understand the potential pathways to GHG reductions.

Projected Trajectory Scenario

Estimates for the Projected Trajectory of Oakland's emissions assumed:

- Projected technological advances & market adoption/penetration (e.g., market adoption of electric heat pumps)
- Stated State & Federal policies (e.g., California Title 24 Building Code updates)
- Existing City policies and funded programs (e.g., Community Choice Energy program; NOT unfunded building retrofit plan)
- Limited City actions responding to market trends (e.g., revised building codes to legalize new technologies; <u>NOT</u> future programs incentivizing adoption of new building technology)

The Projected Trajectory was then compared with Oakland's goals. Those insights to ground the work with local and national experts to figure out what else needed to happen.

Deep Decarbonization Scenario

Collaboration with local and national experts helped to identify the rate of change required in each building system included in CURB to achieve Oakland's GHG goals and put the City on the pathway to Deep Decarbonization.

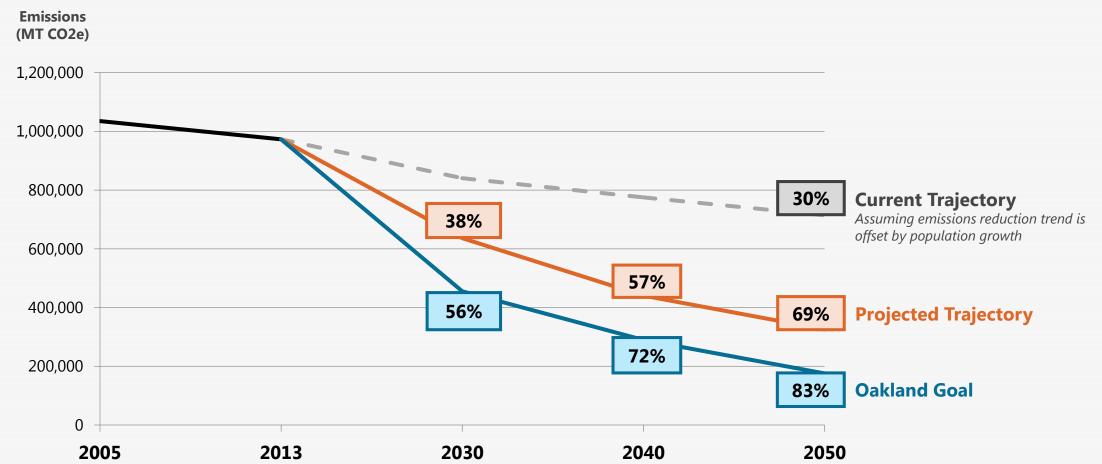
Projecting ahead to 2030 and 2050 inherently involves making assumptions about what the world will look like, based upon the best information available to us today. Below are the key assumptions underlying the buildings Projected Trajectory analysis:

Electricity Mix

• Oakland's electricity grid will be served by 100% renewable energy by 2030

Energy Efficiency Mandates

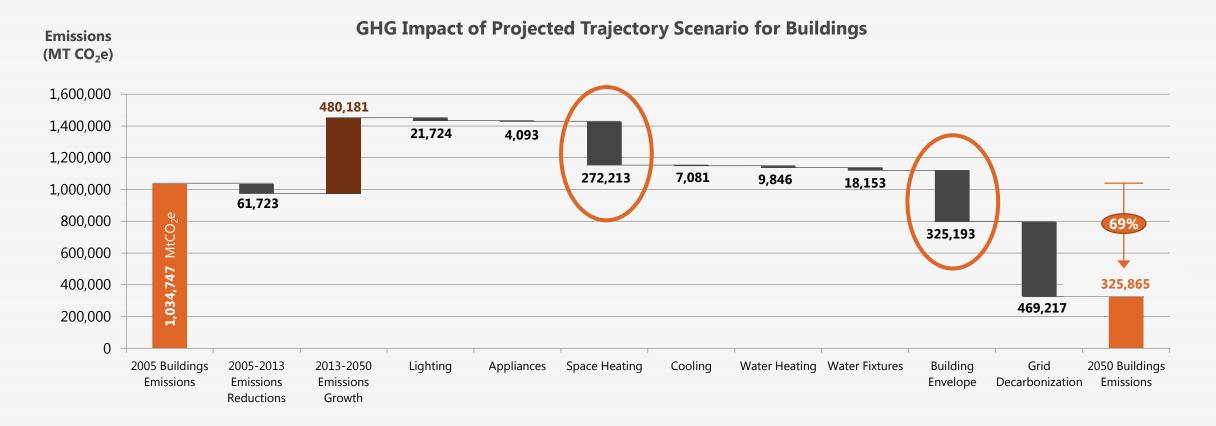
- California's energy efficiency laws will continue to drive significant improvements in building efficiency, particularly for new buildings
- These mandates should lead to near-zero net energy for all new construction by 2020 for residential buildings and 2030 for commercial properties


Current Renovation Programs

- Oakland's current renovation program is reaching 1-2% of multi family properties per year. At best that gets to 66% of multi family properties by 2050
- The statewide target for retrofitting 50% of existing commercial buildings by 2030 will also drive adoption of energy efficient technologies in existing commercial buildings

Oakland will not achieve its GHG reduction goals on the Projected Trajectory

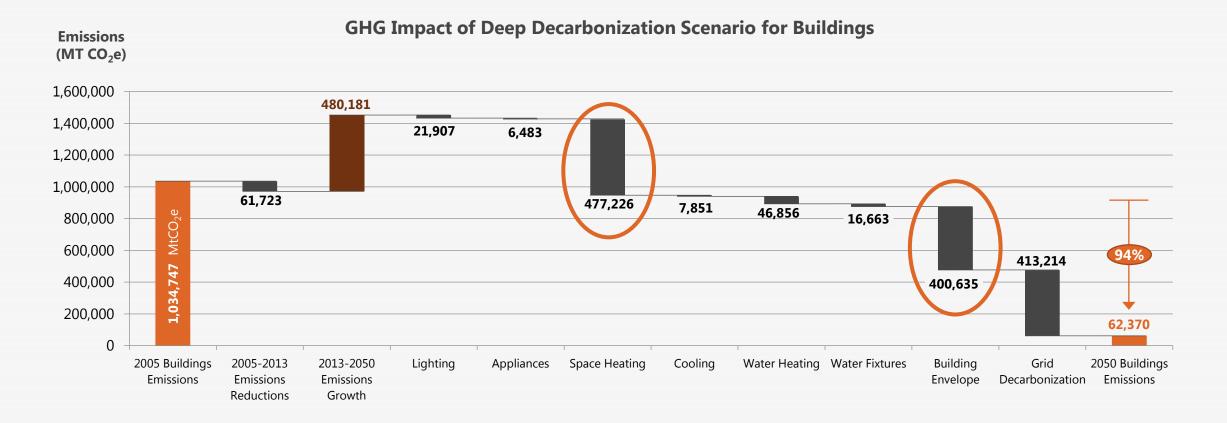
While the Projected Trajectory produces significant reductions from the 2005 baseline, it does not enable the City to meet its reduction targets for the building sector. Oakland needs to take additional actions to close a 18 percentage point gap in 2030 and a 14 percentage point gap in 2050.


Oakland's Projected Building-Related Emissions

Source: Bloomberg Associates Analysis, CURB

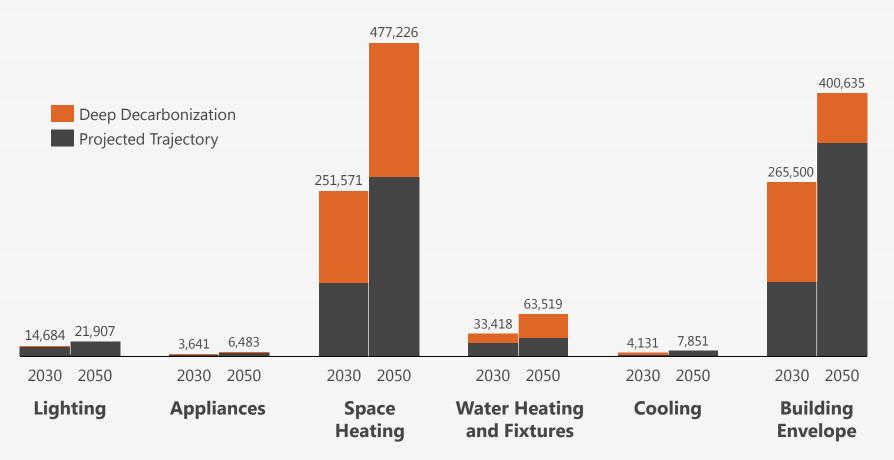
Building-related GHG emissions on the Projected Trajectory (2050)

The Projected Trajectory scenario produces an 69% reduction in buildings-related emissions by 2050. 41% of this reduction is attributable to the shift to a 100% renewable energy electric grid. Other major factors include anticipated improvements in Space Heating and Building Envelopes.



Building-related GHG emissions in the Deep Decarbonization scenario (2050)

The Deep Decarbonization scenario produces a 94% reduction in buildings emissions by 2050. Reductions beyond the Projected Trajectory come primarily from more aggressive actions in Space Heating and the Building Envelope.



Significant differences are apparent between emissions in the Projected Trajectory and Deep Decarbonization scenarios

City action is needed to produce 55% of the required buildings-related reductions by 2030, but only 33% by 2050. Particular focus is needed on Space Heating systems and the Building Envelope, which account for 90% of buildings-related emissions reductions in 2050.

Annual Emissions Reductions (MT CO₂e) from Oakland's Buildings

Gap analysis methodology

Windows example

Bloomberg Associates identified gaps between the Projected Trajectory (PT) and Deep Decarbonization (DD) scenarios to identify where City action is needed to achieve goals.

	CURB Options	Today	2030				2050		
			PT	DD	Delta	PT	DD	Delta	
New Residential	Single Paned		0%	0%	0%	0%	0%	0%	
	Double-Glazed		0%	0%	0%	0%	0%	0%	
Residential	Double G Low-E		98%	98%	0%	95%	95%	0%	
	Triple-Glazed		2%	2%	0%	5%	5%	0%	
	Single Paned	86%	46%	30%	-16%	12%	0%	-12%	
Existing	Double-Glazed	14%	40%	0%	-40%	40%	0%	-40%	
Residential	Low-E	-	10%	70%	60%	43%	95%	52%	
Residentia	Triple-Glazed		4%	0%	-4%	5%	5%	0%	
	Single Paned		5%	0%	-5%	3%	0%	-3%	
New	Double-Glazed		0%	0%	0%	0%	0%	0%	
Residential Existing Residential	Double G Low-E		95%	100%	5%	97%	100%	3%	
	Triple-Glazed		0%	0%	0%	0%	0%	0%	
	Single Paned	84%	64%	34%	-30%	28%	0%	-28%	
Existing	Double-Glazed	16%	27%	0%	-27%	34%	0%	-34%	
Commercial	Low-E		9%	66%	57%	38%	100%	62%	
	Triple-Glazed		0%	0%	0%	0%	0%	0%	

Delta = Deep Decarbonization -Projected Trajectory

Gaps were color-coded to highlight areas where significant gaps exist:

Low

Minimal City action required to achieve goals

Medium

Moderate City action required to achieve goals

Significant City action required to achieve goals

	New B	uildings		Existing Buildings					
Res	Residential Commercial			Resid	ential	Commercial			
2030	2050	2030	2030 2050		2050	2030	2050		
No city action required	No city action required	City action required to shift 5% of new buildings to Low-E window technology	No city action required	Significant City action required to improve insulation in 30% of homes in need of Low- E window technology	City action required to improve insulation in the remaining 12% of homes in need of Low- E window technology	City action needed to improve insulation in 39% of properties needing to adopt Low-E window technology	City action needed to improve window technologies in 34% of properties		

Filtering actions by overall GHG reduction potential enables the City to target its efforts for maximum impact

To reduce building emissions, significant City action is needed to electrify Heating Systems and improve Insulation and Windows in existing buildings.

Extent to which City Action is Required to Achieve Deep Decarbonization

			New Bu	uildings		Existing Buildings				
Building System	Overall GHG Reduction	Residential		Commercial		Residential		Commercial		
	Potential	2030	2050	2030	2050	2030	2050	2030	2050	
Lighting	2%									
Appliances	1%									
Space Heating	18%									
Water Heating & Fixtures	3%									
Cooling	1%									
Building Envelope	12%									

Legend

Low Minimal City action required to achieve goals

uired Medium

Moderate City action required to achieve goals

Significant City action required to achieve goals

Priority City action area

Short-term City actions should focus on space heating and building envelope

	New B	uildings	Existing Buildings		
	Overall	Residential	Commercial	Residential	Commercial
System	GHG↓ Potential	2030	2030	2030	2030
Lighting	2%				
Appliances	1%				
Space Heating	18%				
Water Heating & Fixtures	3%				
Cooling	1%				
Building Envelope	12%				

New Buildings City Focus Areas

- City action needed to **increase adoption of electric space** heating systems
- Because new buildings are likely to see slower turnover in their buildings systems, adopting more ambitious actions in the next ten years can have a disproportionate impact on emissions by 2050

Existing Buildings City Focus Areas

- While nearly all building systems in most existing buildings require updates, short-term City action should **prioritize retrofits in space** heating systems while also dramatically improving the building envelope
- Heating and cooling have a much longer turnover period than other systems (up to 30 years). Prioritizing these in the short term can avoid having to retrofit the same systems before their useful life is up

Legend

- Low
- = Minimal City action needed to reach goal = Moderate City action needed to reach goal Medium
- High
- = Significant City action needed to reach goal
- = Priority City action area

	New B	uildings	Existing Buildings		
System	Overall GHG↓ Potential	Residential	Commercial	Residential	Commercial
		2050	2050	2050	2050
Lighting	2%				
Appliances	1%				
Space Heating	18%				
Water Heating & Fixtures	3%				
Cooling	1%				
Building Envelope	12%				

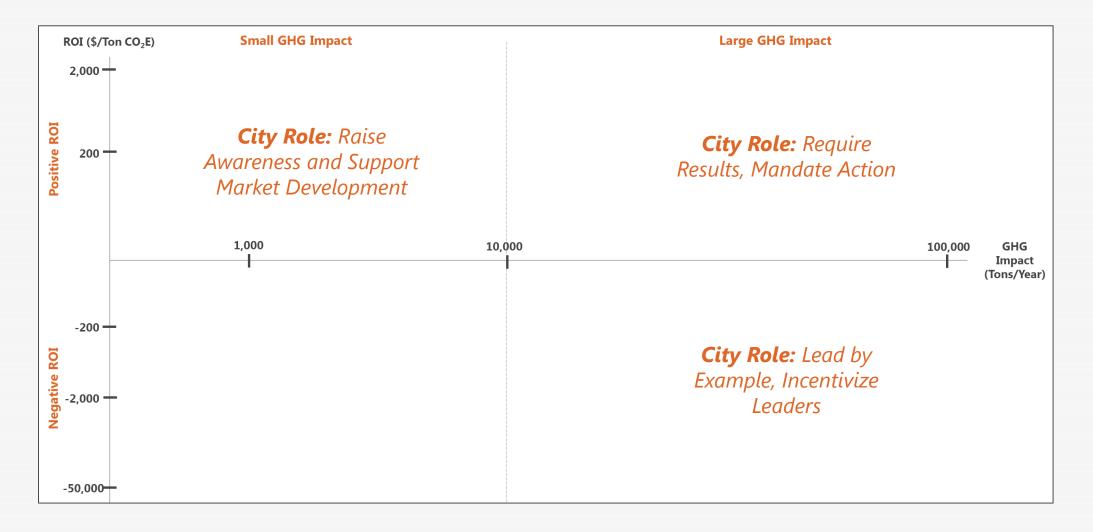
New Buildings City Focus Areas

- Most actions for new buildings should be prioritized in the short-term
- Continued updates to building codes to account for further technological developments will be important, but are not modeled in CURB

Existing Buildings City Focus Areas

- Continued progress must be made to retrofit space heating systems in existing buildings, while dramatically improving the building envelope
- Relative impact of existing buildings will shrink over time as buildings are torn down and rebuilt; however, existing buildings represent 71% of the cumulative GHG reductions

Legend


- = Minimal City action needed to reach goal
- **Medium** = Moderate City action needed to reach goal
- High
- = Significant City action needed to reach goal
- = Priority City action area

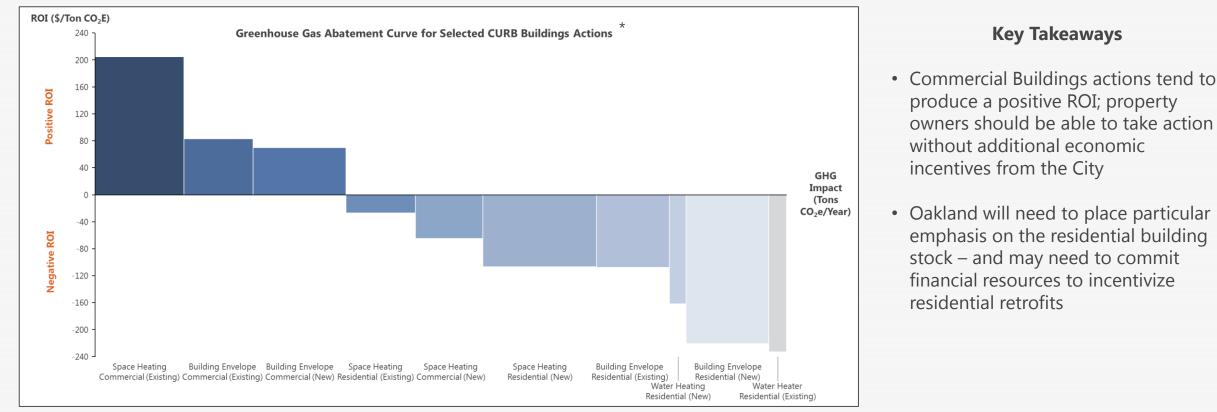
CURB's financial analysis function compares the implementation cost, net present value, and GHG impact of each potential action

Comparing return on investment with GHG impact can help Oakland determine the types of policies it should focus on for a given action.

2050 Deep Decarbonization: Cost per ton CO₂e

Within buildings, Building Envelopes, Space Heating, and Residential Water Heating account for 94% of potential reductions for buildingsrelated emissions. In these categories, Commercial Buildings generally offer a positive ROI.

Return on Investment and Annual GHG Impact of CURB Buildings Actions in Deep Decarbonization Scenario


These actions represent 94% of the GHG abatement potential for Oakland's buildings

Note: Given wide range of ROI and GHG Impact values, axes and action placement are approximate. Given limited flexibility with cooling technology options available in CURB, cost estimates are likely to be overstated while GHG impact is likely to be understated.
 Source: Bloomberg Associates Analysis, CURB

The GHG Abatement Curve displays economic data for each selected action; however, it does not identify who pays that cost or receives that benefit. Oakland can tailor its policies to adjust the burden for actions with a negative ROI.

*Collectively, all other buildings actions reduce GHG emissions by 32,000 tons of CO₂e per year (6% of total buildings-related reductions), at a weighted average ROI of \$-1,000.

Estimated implementation costs, savings, and GHG impacts of building system changes in the Deep Decarbonization scenario

Building Type	Building Status	Building System	NPV (cumulative)	Implementation Cost	Annual Savings	Payback Period	Emissions Abatement ('000 tons)	Abatement Cost / Ton
Residential	New	Lighting	\$ (127,874,814)	\$ 59,934,046	\$ 17,060,513	3.5	1,164	\$ (1,919)
		Appliances	\$ (19,930,988)	\$ 58,268,018	\$ 5,588,394	10.4	548	\$ (625)
		Space Heating	\$ 291,404,940	\$ 122,375,585	\$ (6,583,596)	-18.6	55,259	\$ 107
		Cooling	\$ 384,987,157	\$ 493,107,141	\$ 305,746	1612.8	175	\$ 40,091
		Water Heating	\$ 57,037,906	\$ 43,587,995	\$ (436,959)	-99.8	5,387	\$ 162
		Water Fixtures	\$ (19,006,664)	\$ 540,538	\$ 1,621,587	0.3	3,167	\$ (115)
		Building Envelope	\$ 422,973,932	\$ 1,770,744,308	\$ 32,568,252	54.4	35,251	\$ 221
	Existing	Lighting	\$ (199,832,756)	\$ 38,846,212	\$ 11,521,685	3.4	3,960	\$ (1,952)
		Appliances	\$ (12,312,419)	\$ 112,343,908	\$ 3,908,441	28.7	1,863	\$ (288)
		Space Heating	\$ 91,072,716	\$ 99,809,500	\$ 3,067,266	32.5	95,494	\$ 27
		Cooling	\$ 865,630,708	\$ 743,787,069	\$ 182,527	4074.9	605	\$ 55,476
		Water Heating	\$ 111,329,353	\$ 36,025,123	\$ (6,340,932)	-5.7	12,423	\$ 233
		Water Fixtures	\$ (38,790,110)	\$ 611,833	\$ 2,072,737	0.3	11,210	\$ (145)
		Building Envelope	\$ 305,696,587	\$ 1,319,347,008	\$ 27,872,750	47.3	108,555	\$ 108
Commercial	New	Lighting	\$ (131,823,778)	\$ 370,820,221	\$ 34,104,623	10.9	2,526	\$ (877)
		Appliances	\$ (37,322,962)	\$ 48,111,934	\$ 6,964,937	6.9	516	\$ (1,216)
		Space Heating	\$ 109,634,179	\$ 70,676,232	\$ 343,046	206.0	36,766	\$ 65
		Cooling	\$ 223,616,403	\$ 408,498,304	\$ 6,590,848	62.0	1,084	\$ 3,465
		Water Heating	\$ 4,515,844	\$ 3,515,452	\$ 153,606	22.9	639	\$ 130
		Water Fixtures	\$ (404,344)	\$ 10,054	\$ 34,876	0.3	58	\$ (126)
		Building Envelope	\$ (145,908,121)	\$ 1,222,299,628	\$ 64,427,853	19.0	32,725	\$ (70)
	Existing	Lighting	\$ (198,471,060)	\$ 392,236,519	\$ 33,481,463	11.7	7,034	\$ (1,059)
		Appliances	\$ (33,610,974)	\$ 31,748,563	\$ 3,612,503	8.8	714	\$ (1,203)
		Space Heating	\$ (499,463,869)	\$ 43,448,580	\$ 34,535,154	1.3	64,052	\$ (205)
		Cooling	\$ 280,980,323	\$ 315,878,983	\$ 4,419,019	71.5	2,267	\$ 4,019
		Water Heating	\$ 1,547,280	\$ 2,346,273	\$ 20,329	115.4	352	\$ 65
		Water Fixtures	\$ (692,976)	\$ 9,153	\$ 36,892	0.2	182	\$ (159)
		Building Envelope	\$ (208,709,859)	\$ 669,589,062	\$ 15,828,100	42.3	88,969	\$ (83)

Source: Bloomberg Associates Analysis, CURB


J IIII

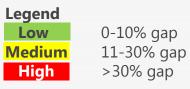
2050 Emissions Reduction from 2013 Baseline Emissions

	New Residential	New Commercial	Existing Residential	Existing Commercial	Total
Lighting	<1%	<1%	<1%	1.0%	1.9%
Appliances	<1%	<1%	<1%	<1%	1.2%
Space Heating	2.3%	2%	7.7%	6%	18%
Water Heating	<1%	<1%	1.5%	<1%	2.4%
Water Fixtures	<1%	0%	<1%	0%	.6%
Cooling	<1%	<1%	<1%	<1%	1.2%
Building Envelopes	1.8%	1.3%	4.9%	4.1%	12.1%
TOTAL	5.6%	4.5%	15.3%	12.0%	37.4%

Detailed Buildings Tables

		CURB Tool Options	Today	20	30	2()50
				Projected	Deep	Projected	Deep
	Tech			Trajectory	Decarbonize	Trajectory	Decarbonize
New	Te	CFL		0%	0%	0%	0%
Residential		LED		100%	100%	100%	100%
Residential	ols	None		70%	50%	0%	0%
	Controls	Occupancy Controls		30%	50%	100%	100%
		Incandescent	46%	0%	0%	0%	0%
	Tech	CFL	54%	10%	0%	0%	0%
Existing		LED	0%	90%	100%	100%	100%
Residential	ols	None	100%	80%	50%	60%	20%
	Controls	Occupancy Controls	0%	20%	50%	40%	80%
	Tech	LED		100%	100%	100%	100%
	Tec	Fluorescent T-8		0%	0%	0%	0%
New	S	None		10%	0%	0%	0%
Commercial	tro	Occupancy Controls		70%	80%	75%	75%
	Controls	Daylighting		10%	0%	0%	0%
	0	Combined		10%	20%	25%	25%
		CFL	6%	0%	0%	0%	0%
	Tech	LED	7%	80%	100%	100%	100%
	Ч	Fluorescent T-12	20%	0%	0%	0%	0%
Existing		Fluorescent T-8	67%	20%	0%	0%	0%
Commercial	SI	None	67%	59%	44%	24%	0%
	itro	Occupancy Controls	20%	28%	43%	51%	75%
	Controls	Daylighting	7%	7%	7%	19%	15%
	0	Combined	6%	6%	6%	6%	10%

Source: Bloomberg Associates Analysis, CURB


Lighting

Intro	Progress	Pathways	\geq	Policy	Conclusion	Appendices	> •	Buildings	
	CURB – E	missions	R	eductio	on Potent	ial: 1.9%	7		1

Lighting systems should advance at required rates with minimal City action. Some work is required to increase adoption of occupancy controls.

	New B	uildings		Existing Buildings			
Resid	ential	Commercial		Residential		Commercial	
2030	2050	2030	2050	2030	2050	2030	2050
LED lighting will be adopted at rates needed to achieve targets. City action needed to shift additional 20% of new buildings to occupancy controls	No City action required. LED lighting and occupancy controls will be adopted at rates needed to achieve targets	LED lighting will be adopted at rates needed to achieve targets City action needed to shift additional 20% of new buildings to occupancy controls	No City action required LED lighting and occupancy controls will be adopted at rates needed to achieve targets	City action required to shift final 10% of existing buildings to LED and to increase use of occupancy controls in additional 30% of existing buildings	LED lighting will be adopted at rates needed to achieve targets City action needed to shift additional 40% of existing buildings to occupancy controls	City action required to shift final 20% of existing buildings to LED and to increase use of occupancy controls in additional 15% of existing buildings	LED lighting will be adopted at rates needed to achieve targets City action needed to shift additional 28% of existing buildings to occupancy controls

Lighting

CURB – Emissions Reduction Potential: 1.2%

	CURB Tool Options	Today	2030		20)50
New			Projected Trajectory	Deep Decarbonize	Projected Trajectory	Deep Decarbonize
Residential	Mid-Range Efficiency		25%	0%	25%	0%
	High-Range Efficiency		75%	100%	75%	100%
	Standard	25%	25%	0%	25%	0%
Existing Residential	Mid-Range Efficiency	61%	61%	15%	61%	5%
	High-Range Efficiency	14%	14%	85%	14%	95%
New	Mid-Range Efficiency		25%	0%	25%	0%
Commercial	High-Range Efficiency		75%	100%	75%	100%
Existing	Standard	55%	50%	0%	0%	0%
Commercial	Mid-Range Efficiency	45%	45%	55%	37%	0%
	High-Range Efficiency	_	5%	45%	63%	100%

Appliances

CURB – Emissions Reduction Potential: 1.2%

City action needed to increase adoption of high efficiency appliances by 2030. Additional work needed on existing commercial buildings through 2050.

	New B	uildings		Existing Buildings			
Resid	ential	Comn	Commercial		ential	Commercial	
2030	2050	2030	2050	2030	2050	2030	2050
City action required to shift remaining 25% of new buildings to high efficiency appliances	No additional City action required between 2030 and 2050 if 2030 target is reached	City action required to shift remaining 25% of new buildings to high efficiency appliances	No additional City action required between 2030 and 2050 if 2030 target is reached	Significant City action required to shift 71% of existing buildings to high efficiency appliances	City action required between 2030 and 2050 to shift additional 10% of existing homes to high efficiency appliances , if 2030 target is reached	Significant City action needed to shift 50% of existing buildings from standard appliances to mid-range and high efficiency	After achieving 2030 targets, significant additional City action required between 2030 and 2050 to shift an additional 45% of existing commercial buildings to high efficiency

Appliances

Space Heating

CURB – Emissions Reduction Potential: 18%

	CURB Tool Options	Today	20	030	20	050
			Projected Trajectory	Decarbonize	Projected Trajectory	Decarbonize
	Low Efficiency Boiler		5%	0%	0%	0%
New	Standard Efficiency Boiler (T24)		0%	0%	0%	0%
Residential	High Efficiency Boiler Gas		45%	0%	20%	0%
	High Efficiency Boiler Electric		0%	50%	25%	45%
	Electric Heater		0%	0%	0%	0%
	Electric Heat Pump		50%	50%	55%	55%
	Low Efficiency Boiler (Below Standard)	74%	11%	0%	0%	0%
	Standard Efficiency Boiler	-	35%	10%	20%	0%
Existing	High Efficiency Boiler Gas	8%	36%	15%	35%	0%
Residential	High Efficiency Boiler Electric		0%	35%	15%	35%
	Electric Heater	18%	9%	10%	10%	5%
	Electric Heat Pump		9%	30%	20%	60%
	Low Efficiency Boiler		9%	0%	0%	0%
	Standard Efficiency Boiler (T24)		16%	5%	5%	0%
New	High Efficiency Boiler Gas		0%	0%	0%	0%
Commercial	High Efficiency Boiler Electric		40%	40%	40%	40%
	Electric Heater		3%	5%	0%	0%
	Electric Heat Pump		32%	50%	55%	60%
	Low Efficiency Boiler	28%	16%	10%	8%	0%
	Standard Efficiency Boiler	56%	54%	35%	37%	0%
Existing	High Efficiency Boiler Gas		10%	10%	10%	0%
Commercial	High Efficiency Boiler Electric	-	0%	10%	15%	40%
	Electric Heater	10%	10%	5%	10%	0%
	Electric Heat Pump	5%	10%	30%	20%	60%

Source: Bloomberg Associates Analysis, CURB

CURB – Emissions Reduction Potential: 18%

Significant City action required to electrify heating systems in all building types by 2030. Continued action required through 2050 for existing buildings.

	New Bu	uildings			Existing	Buildings	
Resid	ential	Comn	nercial	Residential		Commercial	
2030	2050	2030	2050	2030	2050	2030	2050
Significant City action required to shift an additional 50% of new residential buildings to electric systems	Assuming 2030 targets are met, no City action required for new residential buildings	Significant City action required to electrify heating systems in an additional 20% of new commercial buildings	Limited City action required to shift remaining 5% of existing buildings to heat pumps	Significant City action required to shift an additional 55% of existing residential buildings to electric heating systems	City action required to shift remaining 30% of existing residential buildings to heat pumps	Significant City action required to shift an additional 30% of existing commercial buildings to electric heating systems	Significant City action needed to shift an additional 55% of existing buildings to electric heating and increase efficiency of electric systems in another 10%

Space Heating

Water Heating

CURB – Emissions Reduction Potential: 2.4%

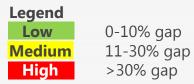
	CURB Tool Options	Today	20)30	20)50
			Projected Trajectory	Decarbonize	Projected Trajectory	Decarbonize
	Standard Efficiency Gas Boiler		13%	0%	4%	0%
New Residential	High Efficiency Gas Boiler		79%	46%	90%	0%
	High Efficiency Electric Boiler		0%	46%	0%	50%
	Electric Heat Pump		6%	8%	5%	50%
	Solar Hot Water		2%	0%	1%	0%
	Standard Efficiency Gas Boiler	87%	71%	40%	60%	0%
Existing	High Efficiency Gas Boiler	5%	9%	30%	20%	0%
Residential	Electric Heat Pump	5%	12%	20%	13%	100%
	Solar Hot Water	8%	8%	10%	7%	0%
	Standard Efficiency Gas Boiler		0%	0%	0%	0%
	High Efficiency Gas Boiler		95%	51%	95%	0%
New Commercial	Electric Heater		0%	19%	0%	40%
Commercial	Electric Heat Pump		0%	25%	0%	51%
	Solar Hot Water		5%	5%	5%	9%
	Standard Efficiency Gas Boiler	95%	65%	22%	30%	0%
P 1 (1)	High Efficiency Gas Boiler	-	30%	44%	65%	0%
Existing Commercial	Electric Heater	-	0%	29%	0%	40%
commercial	Electric Heat Pump	5%	2%	2%	0%	50%
	Solar Hot Water		3%	3%	5%	10%

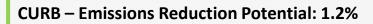
Source: Bloomberg Associates Analysis, CURB

CURB – Emissions Reduction Potential: .6%

Buildings

	CURB Tool Options	Today	2030		2050	
			Projected Trajectory	Decarbonize	Projected Trajectory	Decarbonize
New Residential	Standard		5%	0%	5%	0%
	Low-Flow		95%	100%	95%	100%
Existing	Standard	86%	20%	0%	5%	0%
Residential	Low-Flow	14%	80%	100%	95%	100%
New	Standard		0%	0%	5%	0%
Commercial	Low-Flow		100%	100%	95%	100%
Existing	Standard	54%	10%	0%	5%	0%
Commercial	Low-Flow	46%	90%	100%	95%	100%




Water Fixtures

CURB – Emissions Reduction Potential: 3%

Significant City action required to electrify water heating systems in all building types in both 2030 and 2050.

	New Buildings			Existing Buildings			
Resid	lential	Comm	ercial	Reside	Residential		nercial
2030	2050	2030	2050	2030	2050	2030	2050
City action needed to shift 46% of new buildings to electric boilers City action also needed to install low flow water systems in additional 5% of new homes	City action needed to shift remaining 46% of new buildings to electric heat pumps	City action needed to electrify additional 44% of new commercial buildings by 2030	City action required to electrify remaining 51% of new commercial buildings	Significant City action required to electrify water heating systems in 10% of existing homes while increasing the efficiency of gas boilers in 21% of existing homes City action needed to install low flow water systems in additional 20% of existing homes	Significant City action required to shift remaining 70% of existing buildings to heat pumps	City action needed to electrify 29% of existing buildings by 2030, while increasing efficiency of gas boilers in 14% of existing buildings City action required to increase adoption of low flow water systems in 10% of existing properties	Significant City action required to electrify water heating systems in remaining 66% of buildings

	CURB Tool Options	Today	20	030	20	050
			Projected Trajectory	Decarbonize	Projected Trajectory	Decarbonize
New	High Efficiency Chillers		45%	14%	45%	14%
Residential	Air Source Heat Pumps (mini splits)		10%	6%	10%	6%
	Ground / Water Source Heat Pumps		45%	80%	45%	80%
	Low Efficiency Chillers			0%	0%	0%
- • •	Medium Efficiency Chillers	14%	7%	0%	0%	0%
Existing Residential	High Efficiency Chillers		7%	5%	5%	0%
Residentia	Air Source Heat Pumps / (A/C)	86%	8%	5%	0%	0%
	Ground Source Heat Pumps		78%	90%	95%	100%
	High Efficiency Chillers		59%	59%	59%	60%
New Commercial	Air Source Heat Pumps (RTU)		41%	36%	0%	0%
Commercial	Ground Source Heat Pumps		0%	5%	41%	40%
	Low Efficiency Chillers	20%	11%	4%	4%	0%
	Medium Efficiency Chillers	13%	16%	6%	7%	0%
Existing Commercial	High Efficiency Chillers		10%	23%	26%	37%
commerciar	Air Source Heat Pumps	67%	63%	40%	0%	0%
	Ground Source Heat Pumps		0%	27%	63%	63%

Cooling

CURB – Emissions Reduction Potential: 1.2%	

Short-term City action required most to increase use of higher efficiency cooling systems. Limited additional action required between 2030 and 2050.

New Buildings					Existing	Buildings	
Residential Commercial		nercial	rcial Residential		Commercial		
2030	2050	2030	2050	2030 2050		2030	2050
City action required to shift 35% of new buildings to ground source heat pumps	No City action required, assuming 2030 targets are met	City action required to shift 5% of new buildings to ground source heat pumps	No additional action required for new commercial buildings.	City action required to shift 12% of existing buildings to ground source heat pumps	Limited City action required to increase shift remaining 5% of existing buildings to heat pumps	City action required to shift 40% of existing buildings to higher efficiency cooling systems	City action required to shift 11% of existing buildings to high efficiency chillers

egend	
Low	0-10% gap
/ledium	11-30% gap
High	>30% gap

Cooling

Buildings

Building Envelope

CURB – Emissions Reduction Potential: 12.1%

Wall Insulation

		Today	2	030	2	050
			PT	DD	PT	DD
	No Insulation		0%	0%	0%	0%
New Residential	Improved 1		5%	0%	0%	0%
	Improved 2		5%	5%	5%	0%
	Advanced		90%	95%	95%	100%
	No Insulation	54%	46%	0%	36%	0%
Existing	Improved 1	21%	24%	46%	23%	0%
Residential	Improved 2	25%	16%	24%	22%	50%
	Advanced	-	4%	30%	14%	50%
	No Insulation		0%	0%	0%	0%
New	Improved 1		16%	5%	16%	0%
Commercial	Improved 2		0%	0%	0%	0%
	Advanced		84%	95%	84%	100%
	No Insulation	84%	76%	30%	56%	0%
Existing Commercial	Improved 1	16%	16%	42%	16%	0%
	Improved 2	-	8%	8%	16%	50%
	Advanced	-	0%	20%	12%	50%

Roof Insulation

		Today	2030		2050	
			PT	DD	PT	DD
	No Insulation		0%	0%	0%	0%
New Residential	Improved 1		5%	0%	0%	0%
Residential	Improved 2		5%	0%	5%	0%
	Advanced		90%	100%	95%	100%
	No Insulation	14%	10%	0%	5%	0%
Existing	Improved 1	61%	60%	20%	52%	0%
Residential	Improved 2	25%	20%	50%	22%	50%
	Advanced	-	10%	30%	21%	50%
	No Insulation		0%	0%	0%	0%
New	Improved 1		5%	0%	0%	0%
Commercial	Improved 2		5%	0%	5%	0%
	Advanced		90%	100%	95%	100%
	No Insulation	57%	50%	20%	34%	0%
Existing	Improved 1	43%	41%	30%	28%	0%
Commercial	Improved 2	-	9%	34%	31%	50%
	Advanced	-	0%	16%	7%	50%

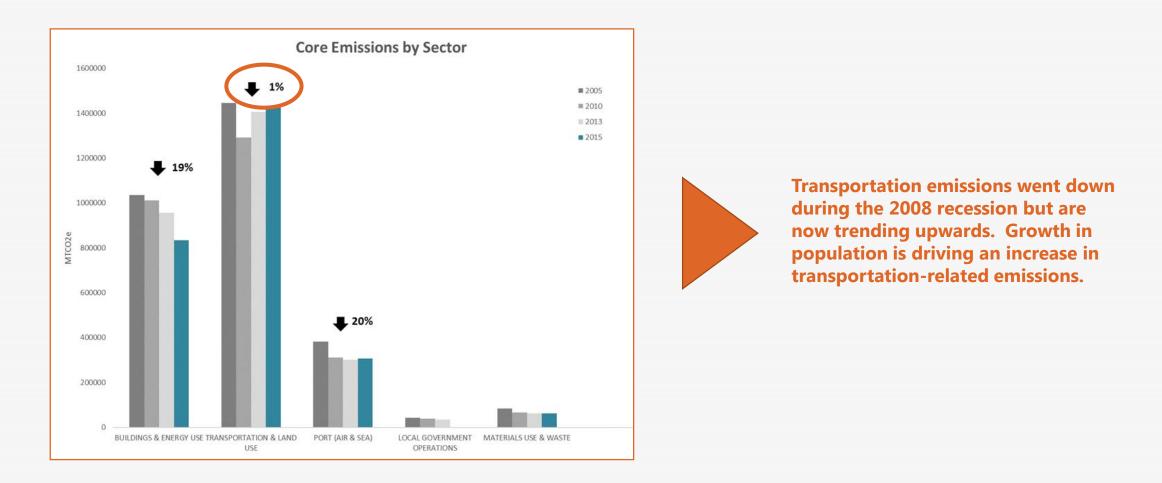
PT = Projected Trajectory Scenario DD = Deep Decarbonization Scenario

Windows

		Today	2030		20	50
			Projected Trajectory	Deep Decarbonize	Projected Trajectory	Deep Decarbonize
	Single Paned		0%	0%	0%	0%
New Residential	Double-Glazed		0%	0%	0%	0%
Residential	Double G Low-E		98%	98%	95%	95%
	Triple-Glazed		2%	2%	5%	5%
	Single Paned	86%	46%	30%	12%	0%
Evicting Decidential	Double-Glazed	14%	40%	0%	40%	0%
Existing Residential	Low-E	-	10%	70%	43%	95%
	Triple-Glazed		4%	0%	5%	5%
	Single Paned		5%	0%	3%	0%
	Double-Glazed		0%	0%	0%	0%
New Commercial	Double G Low-E		95%	100%	97%	100%
	Triple-Glazed		0%	0%	0%	0%
	Single Paned	84%	64%	34%	28%	0%
Existing Commercial	Double-Glazed	16%	27%	0%	34%	0%
	Low-E		9%	66%	38%	100%
	Triple-Glazed		0%	0%	0%	0%

Continued City action required to improve insulation in existing buildings for both 2030 and 2050.

	New Buildings				Existing	Buildings	
Resid	ential	Comm	nercial	Residential		Commercial	
2030	2050	2030	2050	2030	2050	2030	2050
City action required to improve insulation in small number of new buildings (wall insulation in 5% of buildings, roof insulation in 10% of buildings)	City action required to improve wall insulation in 5% of new buildings	City action required to shift 11% of new buildings to advanced wall insulation, 10% of new buildings to advanced roof insulation, and 5% of new buildings to Low- E window technology	City action required to shift remaining 5% of buildings to advanced wall insulation	Significant City action required to improve insulation in the 46% of homes with no wall insulation, 50% of homes with no/poor roof insulation, and 60% of homes in need of improved windows	City action required to improve insulation in the remaining 46% of homes with poor wall insulation, 20% of homes with poor roof insulation, and 25% of homes in need of improved windows	City action needed to improve insulation in 46% of properties with no wall insulation, 30% of properties with no roof insulation, and 57% needing to install improved windows	City action needed to improve wall insulation in 64% of properties, roof insulation in 50% of properties, and window technologies in 34% of properties


Building Envelope

Transportation emissions are trending down, but slower than other sectors

While CURB uses a 2013 baseline and the analysis used that dataset, it is important to acknowledge progress that Oakland has made in more recent years. Oakland's most recent data shows that 2015 emissions from then transportation sector were only 1% lower than the 2005 baseline.

tro > Progress > Pathways > Policy > Conclusion > Appendices > Transportation

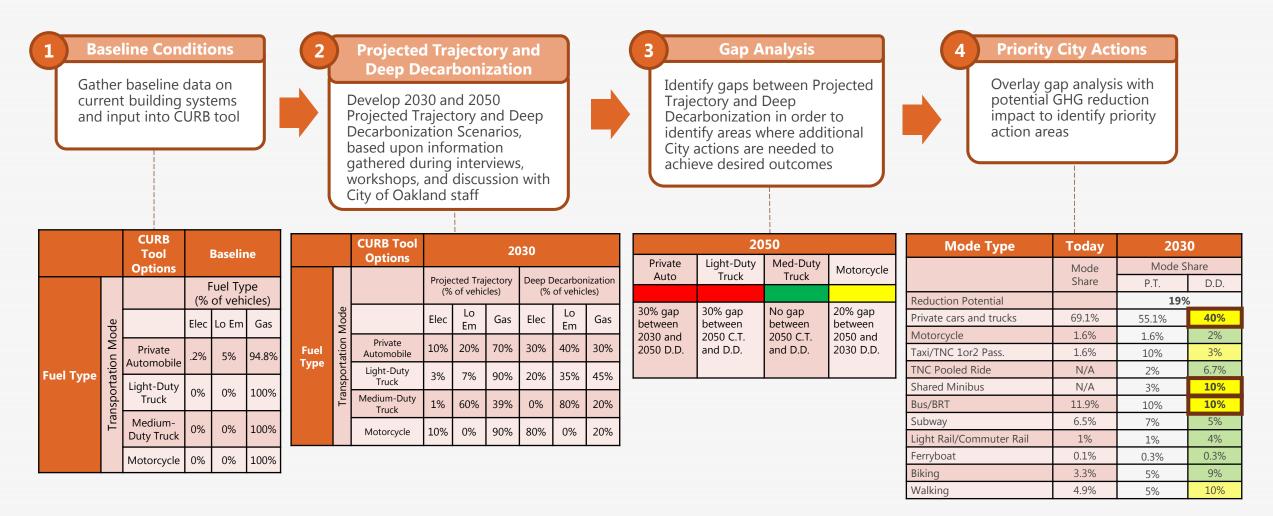
Achieving further reductions will require Oakland to transition to less carbonintensive vehicles and shift passengers to more efficient modes of travel

CURB organizes its transportation inputs into four sets of potential 'actions' influencing future GHG emissions:

- **1.** Transit-Oriented Development
- 2. Passenger Mode Shift
- 3. Vehicle Electrification
- 4. Vehicle Fuel Efficiency

As a result, discussions have focused on ways to reduce GHG emissions based on three associated 'actions':

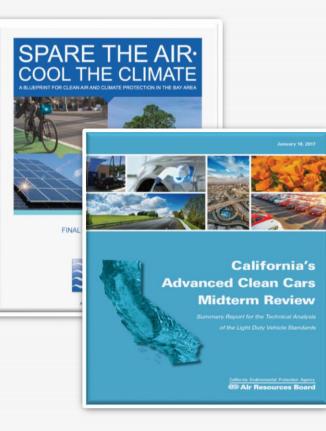
- **1. Reduce average trip length** via urban design
- 2. Reduce per capita emissions per trip via increasing load factor
- 3. Reduce emissions per trip by shifting to lower carbon modes or fuels



Developing scenarios for 2030 and 2050

Bloomberg Associates utilized a four-step process to develop scenarios for 2030 and 2050 in CURB to generate GHG estimates.

- Projected Trajectory projects the expected impacts of market forces together with State and Federal policies
- **Deep Decarbonization** projects where the City needs to be to achieve it's GHG reduction goals


Bloomberg Associates reviewed key documents

Bloomberg Associates reviewed key documents, reports, white papers, and articles to better understand the current state of transportation in Oakland and opportunities to reduce the carbon intensity of the transportation sector.

Bay Area Planning Studies

CA-Focused Technical Studies

National Best Practices

Publically available data provides a broad overview of Oakland's current transportation system...

The current transportation system in Oakland relies heavily on private automobiles for over 2/3 of all trips. While public transit has significant ridership, the introduction of TNCs is threatening to reduce transit ridership and add more car trips to the road.

The current mode share distribution in Oakland is dominated by private auto use:

	Transportation Mode	Mode Share
	Private Autos and Trucks	69.1%
	Motorcycle	1.6%
	Taxi/TNC 1or2 pass.	1.6%
	TNC Pooled Ride	Not avail.
	Shared Minibus	Not avail.
Baseline Mode Share	Standard Bus/BRT	11.9%
Woue Share	BART	6.5%
	Amtrak	1%
	Ferryboat	0.1%
	Biking	3.3%
	Walking	4.9%

The current makeup of vehicles in Oakland is largely gaspowered, with some hybrid vehicles:

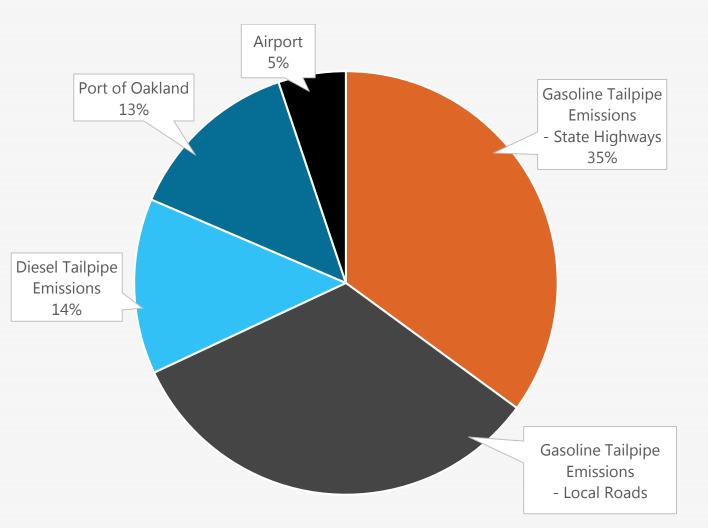
	Vehicle Types	Fuel Type (% of vehicles)			
	venicie Types	Electric	Low Emission	Gas	
	Private Autos	0.2%	5%	94.8%	
	Light-Duty Truck	0%	0%	100%	
Baseline	Medium-Duty Truck	0%	0%	100%	
Vehicle	Motorcycle	0%	0%	100%	
Fuel Types	Тахі	1%	15%	84%	
	TNC Pool	1%	15%	84%	
	Shared Minibus		4%	96%	
	Standard Bus/BRT	0%	2%	98%	

... but must be supplemented by a number of detailed assumptions in CURB

Expert interviews, literature review, and the in-person workshop helped refine core assumptions related to Oakland's baseline conditions.

Key Baseline Assumptions Include:

- Population Growth Rates (1.09% per year)
- Current TOD trends will continue (~2/3 of new units are transit-oriented)
- Adoption rates for EVs will increase over historical trends (% of total sales: today=5%, 2030=40%, 2050=90%)
- AVs will be a normalized part of the transportation system by 2050



Oakland's transportation emissions are driven by gasoline tailpipe emissions

According to the Oakland GHG Inventory, the largest sources of transportation emissions are:

- Gasoline tailpipe emissions on State
 Highways in Oakland represent **35%** of total
 Transportation and Mobile Source emissions
- Gasoline tailpipe emissions on local roads in Oakland represent **33%** of total Transportation and Mobile Source emissions
- The other largest sources of emissions are: diesel tailpipe emissions on local roads (14%), the Port of Oakland (13%), and the airport (5%)

Oakland 2013 Transportation Emissions

Transportation actions have the potential to significantly reduce Oakland's GHG emissions

CURB uses these baseline inputs and assumptions to develop a preliminary analysis of where potential emissions reductions could come from. This information can be used to quickly identify which actions are likely to have the greatest impact. For transportation, multiple actions can produce the same GHG impact (e.g., with a carbon-free grid, shifting a vehicle trip to walking has the same impact as electrifying the private automobile that would have been used for that trip). As a result, the total GHG emissions reduction potential is greater than 100%.

Transit-Oriented Development	10% Potential reduction in transportation-related GHG emissions		
Passenger Mode Shift	68% Potential reduction in transportation-related GHG emissions		
Vehicle Electrification	87% Potential reduction in transportation-related GHG emissions		

Note: CURB does not currently include functionality to provide this preliminary analysis for the Vehicle Fuel Efficiency action **Source**: Bloomberg Associates Analysis, CURB

The analysis developed two scenarios for 2030 and 2050 to compare against Oakland's GHG reduction goals

The next step of the analysis develops and compares scenarios for 2030 and 2050 alongside Oakland's GHG reduction goals, to better understand the potential pathways to GHG reductions.

Projected Trajectory Scenario

The estimated the Projected Trajectory of Oakland's emissions assumed:

- Projected technological advances & market adoption/penetration (e.g., market adoption of electric vehicles)
- Stated State & Federal policies (e.g., US EPA/CARB fuel economy standards)
- Existing City policies and funded programs (e.g., Community Choice Energy program; NOT unfunded bike/walk plans)
- Limited City actions responding to market trends (e.g., revised building codes to enable electric vehicle chargers; <u>NOT</u> future programs incentivizing adoption of chargers in residential buildings)

The Projected Trajectory was then compared with Oakland's goals. Those insights were used to ground the work with local and national experts to figure out what else needed to happen.

Deep Decarbonization Scenario

Collaboration with local and national experts helped to identify the rate of change required to achieve Oakland's GHG goals and put the City on the pathway to Deep Decarbonization.

Key assumptions for the Projected Trajectory scenario (1 of 2)

Projecting ahead to 2030 and 2050 inherently involves making assumptions about what the world will look like, based upon the best information available to us today. Below are the key assumptions underlying the Transportation Projected Trajectory analysis:

Transit-Oriented Development

• Transit-oriented development patterns will continue along current trends, based upon availability of buildable sites in the transit-accessible core of Oakland

• A 'transit-oriented household' is defined as: Development within ¼ mile of a transit stop, including BART stations, rapid bus routes, BRT stations, and bus stops served by a frequency of service interval of 15 minutes or less during AM and PM peak commutes

- Mode share is currently shifting from private autos and buses to TNCs
- 2030 projections don't account for autonomous vehicles due to uncertainty over near-term technological and regulatory hurdles; by 2050 AVs will be a normalized part of the transportation system
- Reductions in private autos by 2030 is due to shift to 1 to 2 passenger TNC trips, expansion of other TNC trip types (TNC Pooled Rides and Shared Minibus), and introduction of bike share and electric bicycles

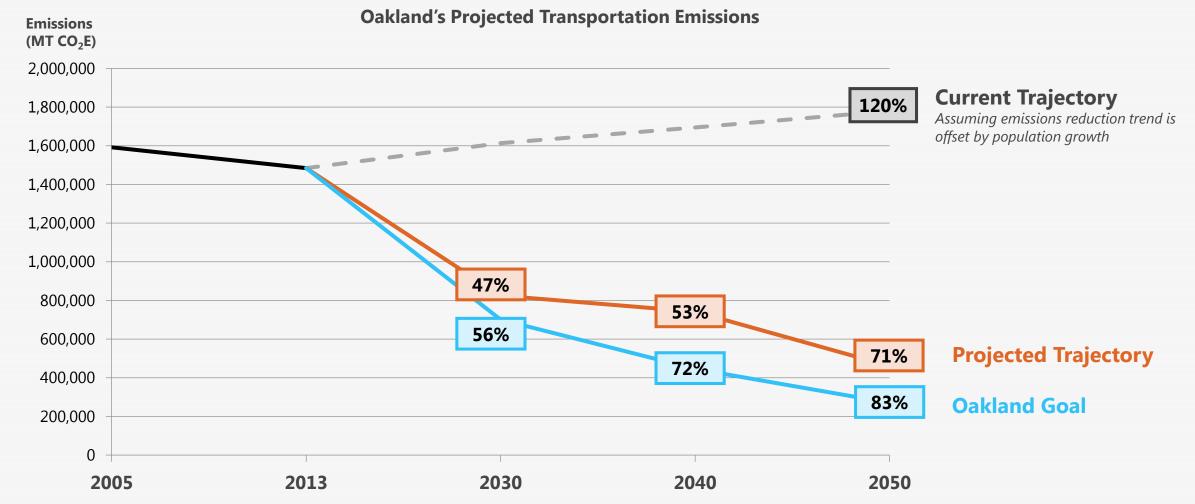
Passenger Mode Shift

- Early growth of TNC mode share was driven by low-efficiency TNC trips (1 or 2 passengers in passenger vehicles) but the greatest GHG reduction potential is a shift to more efficient TNC mode share, both pooled rides (>2 passengers in passenger vehicles) and shared minibus (multi passenger rides in larger vehicles)
- Mode share for buses is being lost to TNCs as they expand market saturation and options to travelers. Planned BRT corridors will likely not reverse this trend, and bus share will continue to shift to TNC modes
- Planned BART's core capacity improvements will likely result in modest increases in mode share for subway
- Investments in improving walkability and pedestrian infrastructure outlined in the OakDOT Strategic Plan will help achieve 2030 goal, but additional actions are required to achieve 2050 goals

Key assumptions for the Projected Trajectory scenario (2 of 2)

Projecting ahead to 2030 and 2050 inherently involves making assumptions about what the world will look like, based upon the best information available to us today. Below are the key assumptions underlying the Transportation Projected Trajectory analysis:

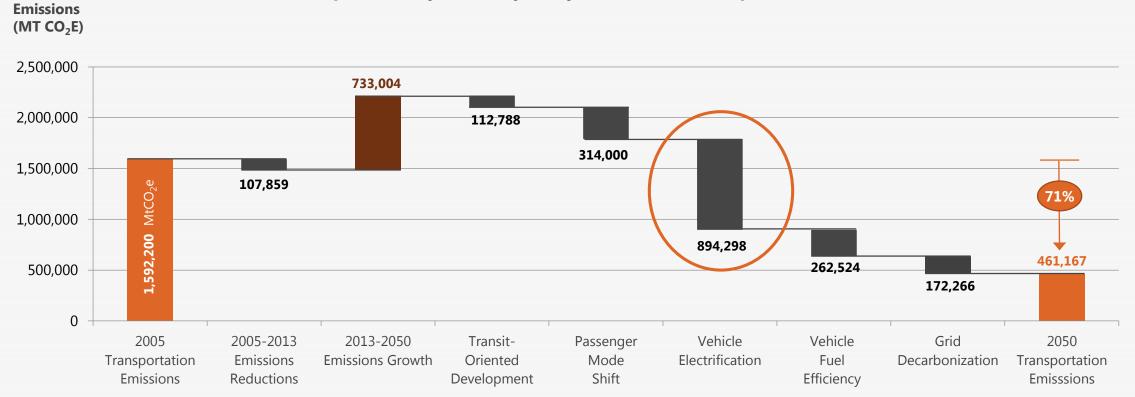
- California incentives for zero/low emission vehicles will increase adoption rate for private autos and light-duty trucks over historical trends: estimates for new sales of electric/low emissions vehicles increase from current 5% of total sales to 40% by 2030 and 90% by 2050
- Shared minibus vehicles (passenger vans) will likely be owned by TNC companies rather than drivers, leading to a faster fleet transition to zero and low-emissions vehicles
- Average age of vehicles on the road is 10.8 years
- Charging infrastructure is essential for transition to EVs; Initial buildout of charging network will be led by private sector but requires City and Utility action to accelerate siting and permitting
- CARB Advanced Clean Transit regulations (once finalized), together with continued improvement in fuel cell and electric bus technologies, will shift bus fleet to zero and low emissions vehicles
- 'Gas' includes both gasoline (petrol) and diesel, in percentages corresponding to baseline through 2030, beyond 2030 assume diesel passenger vehicles are fazed out


- Vehicle Fuel Efficiency
- While it is difficult to project fuel efficiency improvement rates over the long-term, there are likely decreasing efficiency gains over time
- Average age of vehicles on the road is 10.8 years
- Efficiency gains for taxi and TNC pool cars will be driven by Corporate Average Fuel Economy (CAFE) standards set by the State of California and the Federal Government, together with incentives to speed the adoption of electric and fuel efficient vehicles
- CA will likely adopt a renewable diesel standard for 2030, helping improve fuel efficiency for medium-duty trucks

Vehicle Electrification

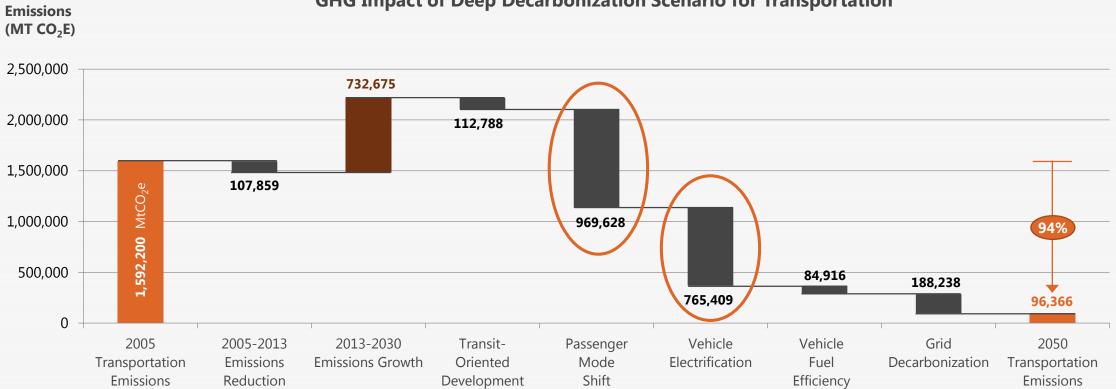
Oakland will not achieve its GHG reduction goals on the Projected Trajectory

While the Projected Trajectory produces significant reductions from the 2005 baseline, it does not enable the City to meet its reduction targets for the transportation sector. Oakland needs to take additional actions to close a nine percentage point gap in 2030 and a 12 percentage point gap in 2050.


Source: Bloomberg Associates Analysis, CURB

-

'**___**'


The Projected Trajectory scenario produces a 71% reduction in transportation emissions by 2050. This reduction is primarily due to the switch to electric and hybrid vehicles.

GHG Impact of Projected Trajectory Scenario for Transportation

The Deep Decarbonization scenario produces a 94% reduction in transportation emissions by 2050. Reduction beyond the Projected Trajectory come primarily from more aggressive actions in passenger mode shift and vehicle electrification.

GHG Impact of Deep Decarbonization Scenario for Transportation

-

h		Gap	analysis	methodology
---	--	-----	----------	-------------

Bloomberg Associates identified gaps between the Projected Trajectory and Deep Decarbonization scenarios to identify where City action is needed to achieve goals.

		CURB Tool Options		Baseline	•			20	30				Delta		
	Mode			Fuel Type of vehic		Projected Trajectory (% of vehicles)			Deep Decarbonization (% of vehicles)		% Gap ≺		Delta =		
cation			Elec	Lo Em	Gas	Elec	Lo Em	Gas	Elec	Lo Em	Gas	Elec	Lo Em	Gas	Deep Decarbonization –
Vehicle Electrification		Private Automobile	0.2%	5%	94.8%	10%	20%	70%	30%	40%	30%	20%	20%	-40%	Projected Trajectory
hicle E	Transportation	Light-Duty Truck	0%	0%	100%	3%	7%	90%	20%	35%	45%	17%	28%	-45%	
Ve		Medium- Duty Truck	0%	0%	100%	1%	60%	39%	0%	80%	20%	-1%	20%	-19%	
		Motorcycle	0%	0%	100%	10%	0%	90%	80%	0%	20%	70%	0%	-70%	

Gaps were color-coded to highlight areas where significant gaps exist:

Minimal City action required to achieve goals

Medium

High

Significant City

Moderate City action required to achieve goals

Significant City action required to achieve goals

			2	030			
Private Auto	Light-Duty Truck	Med-Duty Truck	Motorcycle	Тахі	TNC Pool	Shared Minibus	Bus
20% gap Detween Projected Trajectory and Deep Decarbonizatio n; City action needed to speed adoption of electric vehicles	17% gap between Projected Trajectory and Deep Decarbonizatio n; City action needed to speed adoption of electric vehicles	1% gap between Projected Trajectory and Deep Decarbonizatio n; However limited City action needed given CA is likely to adopt a renewable diesel standard for 2030	70% gap between Projected Trajectory and Deep Decarbonizatio n; However, limited potential for City actions to speed adoption of electric motorcycles	15% gap between Projected Trajectory and Deep Decarbonizatio n; City action needed to speed adoption of electric vehicles	15% gap between Projected Trajectory and Deep Decarbonizatio n; City action needed to speed adoption of electric vehicles	No gap between Projected Trajectory and Deep Decarbonizatio n; no City action needed to speed adoption of electric vehicles	5% gap between Projected Trajectory and Deep Decarbonizatio n; CARB Advanced Clean Transit rules will likely require the bus fleet will transition at rates needed to achieve goals

Summary transportation gap analysis

To reduce transportation emissions, significant City action is needed to provide viable public transit alternatives to private vehicles and to speed electrification for key vehicles types.

Extent to which City Action is Required to Achieve Deep Decarbonization

		Mode	e Share	Vehicle Electrification			
Overall GHG Reduc	tion Potential	39	.8%	50.6%			
Mode Type	Current Mode Share	2030	2050	2030	2050		
Private Autos and Trucks	69.1%	40 %	20%				
Motorcycle	1.6%						
Taxi or 1-2 Passenger TNC	1.6%	3%					
TNC Pooled Ride	N/A						
Shared Minibus	N/A						
Bus/BRT	11.9%	15%					
BART	6.5%		14%				
Amtrak	1%						
Ferryboat	0.1%						
Biking	3.3%						
Walking	4.9%		12.5%				

Legend

Low

Minimal City action required to achieve targets

Medium Moderate City action required to achieve targets

Hiah

Significant City action required to achieve targets

= Priority City action area

Note: This analysis is predicated on the assumption of 100% carbon-free energy grid by 2030 Source: Bloomberg Associates Analysis, CURB

Short-term City actions needed to reduce private vehicle trips

Short-term City focus should be on areas with large GHG reduction potential, a high gap between the Projected Trajectory and Deep Decarbonization scenarios, and to avoid "lock in" of high-carbon technologies.

	Today			2030		2030		
		Mode S	hare			GHG Reduction Potential 5.6%		
Mode Type	Mode Share	Projected Trajectory	Deep Decarbon ization	Vehicle Electrification	Fuel Efficiency	New TOD Households		
Overall GHG Reduction Potential		39.8	3%	50.6%	n/a			
Private Autos and Trucks	69.1%	55.1%	40%			Vehicle Electrification City Focus Areas		
Motorcycle	1.6%	1.6%	1.6%			• In the short-term, City action needed to increase electrification of private vehicles and 1 to 2 passenger taxis and		
Taxi or 1-2 Passenger TNC	1.6%	10%	3%					
TNC Pooled Ride	N/A	2%	5%			TNC vehicles		
Shared Minibus	N/A	3%	9%					
Bus/BRT	11.9%	10%	15%					
BART	6.5%	7%	8%			Legend		
Amtrak	1%	1%	3%			Low = Minimal City action required to achieve goals		
Ferryboat	0.1%	0.3%	0.4%			Medium = Moderate City action required to achieve goals		
Biking	3.3%	5%	7.5%			High = Significant City action required to achieve goals		
Walking	4.9%	5%	7.5%			= Priority City Action Area		

Mode Share City Focus Areas

• City action needed to reduce private auto trips and 1 to 2 passenger taxi/TNC trips and increase bus trips

Note: Priority City actions predicated on assumption of 100% renewable electric grid

Long-term City action needed to electrify key vehicle types and shift to low-carbon travel modes

Because the City must take an "all of the above" approach to reach its GHG goals, longer-term actions should focus on areas with lower GHG impact or where the Projected Trajectory will have a lower impact between 2030 and 2050.

	Today			2050		2030
		Mode Share				GHG Reduction Potential 5.6%
Mode Type	Mode Share	Projected Trajectory	Deep Decarboniz ation	Vehicle Electrification	Fuel Efficiency	New TOD Households
Overall GHG Reduction Potential		39.8	8%	50.6%	n/a	
Private Autos and Trucks	69.1%	48%	20 %			Vehicle Electrification City Focus Areas
Motorcycle	1.6%	1.6%	1.6%		-	In the longer term, continued City
Taxi or 1-2 Passenger TNC	1.6%	5%	3%			action needed to increase
TNC Pooled Ride	N/A	5%	5%			electrification of private vehicles and shared minibus vehicles
Shared Minibus	N/A	10%	10%			
Bus/BRT	11.9%	8%	19.9%			
BART	6.5%	8%	14%			Legend
Amtrak	1%	2%	3%			Low = Minimal City action required to achieve goals
Ferryboat	0.1%	0.4%	1%			Medium = Moderate City action required to achieve goals
Biking	3.3%	6%	10%			High = Significant City action required to achieve goals
Walking	4.9%	6%	12.5%			= Priority City action area

Mode Share City Focus Areas

• Even when vehicles are electrified, continued City action needed to reduce private vehicle trips and increase public transit and walking

104

Note: Priority City actions

predicated on assumption of 100% renewable electric grid

Detailed Transportation Tables

	CURB Tool Options	Today	20	30	20	50
			Projected Trajectory	Deep Decarbonization	Projected Trajectory	Deep Decarbonization
Proportion of New Households	New Transit- Oriented Development Households	43%	65%	65%	65%	65%
Housenoias	Transit-Oriented Development Trip Reduction Factor*	25%	25%	25%	25%	25%

* CURB Tool allows a maximum 25% trip reduction factor

Gap Analysis – Transit-Oriented Development

CURB – Emissions Reduction Potential: 5.6%

There is no gap between Projected Trajectory and Deep Decarbonization for transit-oriented development: Current development trends and policy direction will achieve goals for proportion of new households located in transit accessible areas.

2030	2050
No gap between Projected Trajectory and Deep Decarbonization; No additional City action needed to meet TOD goals.	No gap between Projected Trajectory and Deep Decarbonization; No additional City action needed to meet TOD goals.

Baseline, Projected Trajectory and Deep Decarbonization – Passenger Mode Shift

		CURB Tool Options	Today	2030 Projected Trajectory	2030 Deep Decarbonization	2050 Projected Trajectory	2050 Deep Decarbonization
		Private Autos and Trucks	69.1%	55.1%	40.0%	48.0%	20.0%
		Motorcycle	1.6%	1.6%	1.6%	1.6%	1.6%
	de	Taxi/TNC 1or2 pass.	1.6%	10.0%	3.0%	5.0%	3.0%
	Mode	TNC Pooled Ride	Not avail.	2.0%	5.0%	5.0%	5.0%
		Shared Minibus	Not avail.	3.0%	9.0%	10.0%	10.0%
Mode Share	tation	Standard Bus/BRT	11.9%	10.0%	15.0%	8.0%	19.9%
		BART	6.5%	7.0%	8.0%	8.0%	14.0%
	Inspol	Amtrak	1%	1.0%	3.0%	2.0%	3.0%
	Tra	Ferryboat	0.1%	0.3%	0.4%	0.4%	1.0%
		Biking	3.3%	5.0%	7.5%	6.0%	10.0%
		Walking	4.9%	5.0%	7.5%	6.0%	12.5%

Gap Analysis - Passenger Mode Shif	t
------------------------------------	---

CURB – Emissions Reduction Potential: 39.8%

City action needed to achieve targeted reductions in low-efficiency TNC and private automobile trips.

	2030													
Private Auto and Trucks	Motorcycle	Taxi/TNC 1or2 Pass.	TNC Pooled Ride ↓	Shared Minibus ①	Bus/BRT ①	BART	Amtrak	Ferryboat	Biking ①	Walking ①				
15% gap between Projected Trajectory and Deep Decarbonizatio n, some City action needed to shift away from private autos	No gap between Projected Trajectory and Deep Decarbonization; no City action required	7% gap between Projected Trajectory and Deep Decarbonization ; City action needed to shift trips away from less efficient TNC modes	3% gap between Projected Trajectory and Deep Decarbonization; some City action needed to shift towards high- capacity TNC ride types	6% gap between Projected Trajectory and Deep Decarbonization; some action needed to shift towards high- capacity TNC ride types and larger vehicles	5% gap between Projected Trajectory and Deep Decarbonization; City action required to increase ridership	1% gap between Projected Trajectory and Deep Decarbonization; no City action required	2% gap between Projected Trajectory and Deep Decarbonization; no City action required	<1% gap between Projected Trajectory and Deep Decarbonization; no City action required	2.5% between Projected Trajectory and Deep Decarbonization, some City action needed to increase bicycling trips	2.5% gap between Projected Trajectory and Deep Decarbonization some City action needed to increase walking trips				
					2050									
Private Auto and Trucks	Motorcycle	Taxi/TNC 1or2 Pass.	TNC Pooled Ride	Shared Minibus	Bus/BRT ①	BART ①	Amtrak	Ferryboat 介	Biking ①	Walking ①				
20% gap between 2030 and 2050 Deep Decarbonizatio n; Aggressive City action needed to reduce private auto mode share	No gap between 2050 Projected Trajectory and Deep Decarbonization; no City action needed from 2030 to 2050	No gap between 2030 Projected Trajectory and 2050 Deep Decarbonization ; no City action needed from 2030 to 2050	No gap between 2030 and 2050 Deep Decarbonization; limited City action needed to shift towards high-capacity TNC ride types	No gap 2050 Projected Trajectory and Deep Decarbonization; some City action needed after 2030 to shift towards high- capacity TNC ride types in larger vehicles	4.9% gap between 2030 and 2050 Deep Decarbonization; Limited City action needed to shift trips onto buses	6% gap between 2050 Projected Trajectory and Deep Decarbonization; Limited City action needed to shift trips onto subway (BART)	No gap between 2030 and 2050 Deep Decarbonization; limited City action needed to shift trips onto rail	<1% gap between 2050 Projected Trajectory and Deep Decarbonization; limited City action needed to shift trips onto ferryboats	2.5% gap between 2030 and 2050 Deep Decarbonization; limited City action needed to increase bicycling trips	5% gap betwee 2030 and 2050 Deep Decarbonization Some City actio needed after 2030 to increase walking trips				

Source: Bloomberg Associates Analysis, CURB

Baseline, Projected Trajectory, and Deep Decarbonization: Private Vehicles – Vehicle Electrification

		CURB Tool Options	ł	Baseli	ne			20)30			2050					
				uel Ty of veh			cted Traj of vehic			Deep arboniza of vehicl			:ted Traj of vehicl			Deep arboniza of vehicl	
	Mode		Elec	Lo Em	Gas	Elec	Lo Em	Gas	Elec	Lo Em	Gas	Elec	Lo Em	Gas	Elec	Lo Em	Gas
Fuel Type		Private Automobile	0.2%	5%	94.8%	10%	20%	70%	30%	40%	30%	50%	15%	35%	70%	30%	0%
	sportation	Light-Duty Truck	0%	0%	100%	3%	7%	90%	20%	35%	45%	34%	33%	33%	70%	30%	0%
	Tran	Medium- Duty Truck	0%	0%	100%	1%	60%	39%	0%	80%	20%	30%	70%	0%	40%	60%	0%
		Motorcycle	0%	0%	100%	10%	0%	90%	80%	0%	20%	25%	0%	75%	100%	0%	0%

Baseline, Projected Trajectory and Deep Decarbonization: Commercial Vehicles – Vehicle Electrification

		CURB Tool Options		Baseli	ne			2	030			2050					
	de		(2	Fuel Ty % of veh		· ·	Projecte Trajecto	ry		Deep arboniza of vehic			t ed Traj of vehic			Deep arboniza of vehic	
	n Mode		Elec	Lo Em	Gas	Elec	Lo Em	Gas	Elec	Lo Em	Gas	Elec	Lo Em	Gas	Elec	Lo Em	Gas
Fuel	ition	Тахі	1%	15%	84%	25%	50%	25%	40%	60%	0%	75%	25%	0%	80%	20%	0%
Туре	portation	TNC Pool	1%	15%	84%	25%	50%	25%	40%	60%	0%	75%	25%	0%	80%	20%	0%
	Trans	Shared Minibus	0%	4%	96%	25%	25%	50%	25%	50%	25%	50%	50%	0%	80%	20%	0%
		Standard Bus/BRT	0%	2%	98%	40%	40%	20%	35%	65%	0%	50%	50%	0%	50%	50%	0%

		Gap	Analysis -	Vehicle	Electrification
--	--	-----	------------	---------	-----------------

CURB – Emissions Reduction Potential: 50.6%

City actions needed to shift to electric vehicles in both short- and long-terms.

	2030													
Private Auto	Light-Duty Truck	Med-Duty Truck	Motorcycle	Тахі	TNC Pool	Shared Minibus	Bus							
20% gap between Projected Trajectory and Deep Decarbonization; City action needed to speed adoption of electric vehicles	17% gap between Projected Trajectory and Deep Decarbonization; City action needed to speed adoption of electric vehicles	No gap between Projected Trajectory and Deep Decarbonization; Limited City action needed given CA is likely to adopt a renewable diesel standard for 2030	70% gap between Projected Trajectory and Deep Decarbonization; However, limited potential for City actions to speed adoption of electric motorcycles	15% gap between Projected Trajectory and Deep Decarbonization; City action needed to speed adoption of electric vehicles	15% gap between Projected Trajectory and Deep Decarbonization; City action needed to speed adoption of electric vehicles	No gap between Projected Trajectory and Deep Decarbonization; no City action needed to speed adoption of electric vehicles	5% gap between Projected Trajectory and Deep Decarbonization; CARB Advanced Clean Transit rules will likely require the bus fleet will transition at rates needed to achieve goals							

	2050													
Private Auto	Light-Duty Truck	Med-Duty Truck	Motorcycle	Тахі	TNC Pool	Shared Minibus	Bus/BRT							
20% gap between Projected Trajectory and Deep Decarbonization; City action needed to speed adoption of electric vehicles	36% gap between Projected Trajectory and Deep Decarbonization; City action needed to speed adoption of electric vehicles	10% gap between Projected Trajectory and Deep Decarbonization; However limited City action needed given CA is likely to adopt a renewable diesel standard for 2030	20% gap between 2030 and 2050 Deep Decarbonization; However, limited potential for City actions to speed adoption of electric motorcycles	5% gap between 2030 and 2050 Deep Decarbonization; no City action needed to speed adoption of electric vehicles	5% gap between 2030 and 2050 Deep Decarbonization; no City action needed to speed adoption of electric vehicles	30% gap between 2050 Projected Trajectory and Deep Decarbonization; City action needed to speed adoption of electric vehicles	No gap between 2030 and 2050 Deep Decarbonization; CARB Advanced Clean Transit rules will likely require the bus fleet will transition at rates needed to achieve goals							

Legend

Low

0-10% gap **Medium** 10-20% gap

High >20% point gap

Source: Bloomberg Associates Analysis, CURB

Baseline, Projected Trajectory and Deep Decarbonization: Private Vehicles – Fuel Efficiency

		CURB Tool Options			20	30					20	50		
	de			Projected Trajectory (% improvement)			Deep arboniza nproven		-	t ed Traj nproven		Deep Decarbonization (% improvement)		
	Mode		Elec	Lo Em	Gas	Elec	Lo Em	Gas	Elec	Lo Em	Gas	Elec	Lo Em	Gas
Fuel		Private Automobile	14%	60%	60%	14%	60%	60%	22%	44%	44%	22%	44%	44%
Efficiency	nsportation	Light-Duty Truck	14%	60%	60%	14%	60%	60%	22%	44%	44%	22%	44%	44%
	Trar	Medium- Duty Truck	14%	16%	16%	14%	16%	16%	22%	37%	37%	22%	37%	37%
		Motorcycle	14%	60%	60%	14%	60%	60%	22%	44%	44%	22%	44%	44%

Baseline, Projected Trajectory and Deep Decarbonization: Commercial Vehicles – Fuel Efficiency

		CURB Tool Options			20	30			2050						
	de			:ted Traj e mprovem			ecarbon mprovem		-	c ted Traj o mprovem			ecarbon mprovem		
	Mode		Elec	Lo Em	Gas	Elec	Lo Em	Gas	Elec	Lo Em	Gas	Elec	Lo Em	Gas	
Fuel	tation	Тахі	14%	60%	60%	14%	60%	60%	22%	44%	44%	22%	44%	44%	
Efficiency	orta	TNC Pool	14%	60%	60%	14%	60%	60%	22%	44%	44%	22%	44%	44%	
	Transpo	Shared Minibus	14%	16%	16%	14%	16%	16%	22%	37%	37%	22%	37%	37%	
	Γ.	Standard Bus/BRT	14%	21%	21%	14%	21%	21%	22%	35%	35%	22%	35%	35%	

Gap Analysis - Vehicle Fuel Efficiency

There is no gap between Projected Trajectory and Deep Decarbonization for private vehicle fuel efficiency: Current and projected fuel efficiency standards at State and Federal levels together with market forces will achieve goals.

2030 + 2050							
Private Auto	Light-Duty Truck	Medium-Duty Truck	Motorcycle	Тахі	TNC Pool	Shared Minibus	Bus/BRT
No gaps	No gaps	No gaps	No gaps	No gaps	No gaps	No gaps	No gaps
between	between	between	between	between	between	between	between
Projected	Projected	Projected	Projected	Projected	Projected	Projected	Projected
Trajectory and	Trajectory and	Trajectory and	Trajectory and	Trajectory and	Trajectory and	Trajectory and	Trajectory and
Deep	Deep	Deep	Deep	Deep	Deep	Deep	Deep
Decarbonization;	Decarbonization;	Decarbonization;	Decarbonization;	Decarbonization;	Decarbonization;	Decarbonization;	Decarbonization;
The private	The light-duty	The medium-	The motorcycle	The taxi vehicle	The TNC pool	The shared	The bus fleet will
automobile fleet	truck fleet will	duty truck fleet	fleet will achieve	fleet will achieve	vehicle fleet will	minibus vehicle	achieve fuel
will achieve fuel	achieve fuel	will achieve fuel	fuel efficiency	fuel efficiency	achieve fuel	fleet will achieve	efficiency
efficiency	efficiency	efficiency	improvements at	improvements at	efficiency	fuel efficiency	improvements at
improvements at	improvements at	improvements at	rates at or near	rates at or near	improvements at	improvements at	rates at or near
rates at or near	rates at or near	rates at or near	what is required	what is required	rates at or near	rates at or near	what is required
what is required	what is required	what is required	to achieve goals	to achieve goals	what is required	what is required	to achieve goals
to achieve goals	to achieve goals	to achieve goals			to achieve goals	to achieve goals	5

Legend

0-10% gap Medium 10-20% gap

High >20% point gap

Low

Appendix C – Stakeholder Engagement

NAME ADDRESS OF TAXABLE PARTY ADDRESS OF TAXABLE PARTY.

Annual Long. states, states, house,

Bloomberg Associates interviewed 30 experts

Bloomberg Associates interviewed local, regional, and national experts to develop estimates for the existing conditions in building and transportation systems and to identify the key opportunities to reduce the carbon intensity of those sectors.

Buildings Interviewees

Cliff Rechtschaffen, **CA Office of the Governor** Johanna Partin, **Climate Neutral Cities Alliance** Mariana DiMascio, **Appliance Standards Awareness Project** Ariella Maron, **Buro Happold** Chris Rhine, **Buro Happold** Julina Parsley, **Buro Happold** Chris Garvin, **Terrapin Bright Green** Jim Edelson, **New Buildings Institute** Laurie Kerr, **Urban Green Council** Hillary Firestone, **National Resources Defense Council**

Transportation Interviewees

Chris Benner, UC Santa Cruz Austin Brown, UC Davis Policy Institute for Energy, Env, & Economy Emily Castor, Lyft Erin Cooper, EMBARQ Stacy Davis, Oak Ridge National Laboratory Jessie Denver, SF Dept. of Environment Gina Goodhill, **Tesla** Susan Handy, UC Davis Shruti Hari, Metropolitan Transportation Commission Sal Llamas, Chief Operating Officer, AC Transit Nick Nigro, Atlas Public Policy Val Menotti, BART Nic Lutsey, International Council on Clean Transportation Joel Ramos, TransForm Steve Raney, Joint Venture Silicon Valley Andrew Salzberg, Uber Dan Sperling, Institute for Transportation Studies at UC Davis Cathleen Sullivan, Alameda Co. Transportation Commission Glen Tepke, Metropolitan Transportation Commission Egon Terplan, **SPUR**

Bloomberg Associates convened two sector-specific workshops with experts

BA

Bloomberg Associates convened 30+ Bay Area experts to develop the existing and projected conditions of Oakland's building and transportation systems for CURB and to identify the key opportunities to reduce the carbon intensity of Oakland's those sector.

Buildings Workshop Attendees

Norm Bourassa, Lawrence Berkeley National Lab Amy Dryden, Build It Green Shayna Hirshfield Gold, Public Works, City of Oakland Daniel Hamilton, Public Works, City of Oakland Miya Kitahara, DNV-GL Cole Roberts, Arup Meg Waltner, Arup Wes Sullens, US Green Building Council Andrea Traber, Integral Group Scott Wentworth, Former City of Oakland Alison Williams, Lawrence Berkeley National Lab Kerem Yilmaz, Global Covenant of Mayors

Transportation Workshop Attendees

Ratna Amin, **SPUR** Richard Battersby, Public Works, City of Oakland Dave Burch, Bay Area Air Quality Management District Danielle Dai, OakDOT Becky Dowdakin, Public Works, City of Oakland Michael Ford, OakDOT Ellen Greenberg, Caltrans Jason Haight, A3 Gig Car Share Daniel Hamilton, Public Works, City of Oakland Dermot Hikisch, A3 Gig Car Share Amanda Leahy, Kittleson & Associates Hugh Louch, Alta Planning and Design Ruth McLachlin, Greenfield Labs Melanie Nutter, Nutter Consulting Ed Pike, Energy Solutions Robert Rees, Fehr and Peers Ryan Russo, OakDOT Peter Slowik, International Council on Clean Transportation Emily Stapleton, Ford GoBike Bay Area Iris Starr, **OakDOT** Amruta Sudhalkar, AECOM Fern Uennatornwaranggoon, Environmental Defense Fund Francecsa Wahl, Tesla